Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Пусть . Найдем .
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
По правилу суммы производная по имеет вид .
Этап 1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.5
Добавим и .
Этап 1.2
Переформулируем задачу с помощью и .
Этап 2
Добавим и .
Этап 3
Умножим .
Этап 4
Этап 4.1
Умножим на .
Этап 4.1.1
Возведем в степень .
Этап 4.1.2
Применим правило степени для объединения показателей.
Этап 4.2
Добавим и .
Этап 5
Разделим данный интеграл на несколько интегралов.
Этап 6
По правилу степени интеграл по имеет вид .
Этап 7
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 8
По правилу степени интеграл по имеет вид .
Этап 9
Этап 9.1
Упростим.
Этап 9.2
Упростим.
Этап 9.2.1
Объединим и .
Этап 9.2.2
Сократим общий множитель и .
Этап 9.2.2.1
Вынесем множитель из .
Этап 9.2.2.2
Сократим общие множители.
Этап 9.2.2.2.1
Вынесем множитель из .
Этап 9.2.2.2.2
Сократим общий множитель.
Этап 9.2.2.2.3
Перепишем это выражение.
Этап 10
Заменим все вхождения на .