Математический анализ Примеры

Интегрировать подстановкой интеграл x^2e^(3x) по x
Этап 1
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Поскольку является константой относительно , производная по равна .
Этап 1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4
Умножим на .
Этап 1.2
Переформулируем задачу с помощью и .
Этап 2
Объединим и .
Этап 3
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 3.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Дифференцируем .
Этап 3.1.2
Поскольку является константой относительно , производная по равна .
Этап 3.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.1.4
Умножим на .
Этап 3.2
Переформулируем задачу с помощью и .
Этап 4
Проинтегрируем по частям, используя формулу , где и .
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Объединим и .
Этап 5.2
Объединим и .
Этап 6
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Объединим и .
Этап 7.2
Объединим и .
Этап 7.3
Перенесем влево от .
Этап 8
По правилу степени интеграл по имеет вид .
Этап 9
Упростим.
Нажмите для увеличения количества этапов...
Этап 9.1
Объединим и .
Этап 9.2
Перепишем в виде .
Этап 9.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 9.3.1
Объединим и .
Этап 9.3.2
Объединим и .
Этап 9.3.3
Вынесем знак минуса перед дробью.
Этап 9.3.4
Объединим и .
Этап 9.3.5
Объединим и .
Этап 9.3.6
Вычтем из .
Этап 9.3.7
Добавим и .