Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Пусть . Найдем .
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
По правилу суммы производная по имеет вид .
Этап 1.1.3
Найдем значение .
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Умножим на .
Этап 1.1.4
Продифференцируем, используя правило степени.
Этап 1.1.4.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4.2
Изменим порядок членов.
Этап 1.2
Переформулируем задачу с помощью и .
Этап 2
Объединим и .
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
С помощью запишем в виде .
Этап 5
По правилу степени интеграл по имеет вид .
Этап 6
Этап 6.1
Перепишем в виде .
Этап 6.2
Перепишем в виде .
Этап 7
Заменим все вхождения на .