Математический анализ Примеры

Найти первообразную x логарифм от x
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Проинтегрируем по частям, используя формулу , где и .
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Объединим и .
Этап 5.2
Объединим и .
Этап 6
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Объединим и .
Этап 7.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 7.2.1
Вынесем множитель из .
Этап 7.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 7.2.2.1
Вынесем множитель из .
Этап 7.2.2.2
Сократим общий множитель.
Этап 7.2.2.3
Перепишем это выражение.
Этап 8
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Упростим.
Нажмите для увеличения количества этапов...
Этап 9.1
Умножим на .
Этап 9.2
Перенесем влево от .
Этап 10
По правилу степени интеграл по имеет вид .
Этап 11
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 11.1
Перепишем в виде .
Этап 11.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 11.2.1
Объединим и .
Этап 11.2.2
Объединим и .
Этап 11.2.3
Умножим на .
Этап 11.2.4
Умножим на .
Этап 11.3
Объединим и .
Этап 11.4
Изменим порядок членов.
Этап 12
Ответ ― первообразная функции .