Математический анализ Примеры

Найти первообразную 2/(1-x^2)
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Запишем дробь, используя разложение на элементарные дроби.
Нажмите для увеличения количества этапов...
Этап 5.1
Разложим дробь и умножим на общий знаменатель.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Разложим дробь на множители.
Нажмите для увеличения количества этапов...
Этап 5.1.1.1
Перепишем в виде .
Этап 5.1.1.2
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 5.1.2
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку множитель в знаменателе линейный, поместим одну переменную на его место .
Этап 5.1.3
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку множитель в знаменателе линейный, поместим одну переменную на его место .
Этап 5.1.4
Умножим каждую дробь в уравнении на знаменатель исходного выражения. В этом случае знаменатель равен .
Этап 5.1.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.1.5.1
Сократим общий множитель.
Этап 5.1.5.2
Перепишем это выражение.
Этап 5.1.6
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.1.6.1
Сократим общий множитель.
Этап 5.1.6.2
Перепишем это выражение.
Этап 5.1.7
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.1.7.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.1.7.1.1
Сократим общий множитель.
Этап 5.1.7.1.2
Разделим на .
Этап 5.1.7.2
Применим свойство дистрибутивности.
Этап 5.1.7.3
Умножим на .
Этап 5.1.7.4
Перепишем, используя свойство коммутативности умножения.
Этап 5.1.7.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.1.7.5.1
Сократим общий множитель.
Этап 5.1.7.5.2
Разделим на .
Этап 5.1.7.6
Применим свойство дистрибутивности.
Этап 5.1.7.7
Умножим на .
Этап 5.1.8
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 5.1.8.1
Перенесем .
Этап 5.1.8.2
Изменим порядок и .
Этап 5.1.8.3
Перенесем .
Этап 5.1.8.4
Перенесем .
Этап 5.2
Составим уравнения для переменных элементарной дроби и используем их для создания системы уравнений.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 5.2.2
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты членов, не содержащих . Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 5.2.3
Составим систему уравнений, чтобы найти коэффициенты элементарных дробей.
Этап 5.3
Решим систему уравнений.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 5.3.1.1
Перепишем уравнение в виде .
Этап 5.3.1.2
Вычтем из обеих частей уравнения.
Этап 5.3.2
Заменим все вхождения на во всех уравнениях.
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
Заменим все вхождения в на .
Этап 5.3.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.3.2.2.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.3.2.2.1.1.1
Применим свойство дистрибутивности.
Этап 5.3.2.2.1.1.2
Умножим на .
Этап 5.3.2.2.1.1.3
Умножим .
Нажмите для увеличения количества этапов...
Этап 5.3.2.2.1.1.3.1
Умножим на .
Этап 5.3.2.2.1.1.3.2
Умножим на .
Этап 5.3.2.2.1.2
Добавим и .
Этап 5.3.3
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 5.3.3.1
Перепишем уравнение в виде .
Этап 5.3.3.2
Добавим к обеим частям уравнения.
Этап 5.3.3.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.3.3.3.1
Разделим каждый член на .
Этап 5.3.3.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.3.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.3.3.2.1.1
Сократим общий множитель.
Этап 5.3.3.3.2.1.2
Разделим на .
Этап 5.3.4
Заменим все вхождения на во всех уравнениях.
Нажмите для увеличения количества этапов...
Этап 5.3.4.1
Заменим все вхождения в на .
Этап 5.3.4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.4.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.3.4.2.1.1
Запишем в виде дроби с общим знаменателем.
Этап 5.3.4.2.1.2
Объединим числители над общим знаменателем.
Этап 5.3.4.2.1.3
Вычтем из .
Этап 5.3.5
Перечислим все решения.
Этап 5.4
Заменим каждый коэффициент элементарной дроби в значениями, найденными для и .
Этап 5.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.5.1
Умножим числитель на величину, обратную знаменателю.
Этап 5.5.2
Умножим на .
Этап 5.5.3
Умножим числитель на величину, обратную знаменателю.
Этап 5.5.4
Умножим на .
Этап 6
Разделим данный интеграл на несколько интегралов.
Этап 7
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 8
Пусть . Тогда . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 8.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 8.1.1
Дифференцируем .
Этап 8.1.2
По правилу суммы производная по имеет вид .
Этап 8.1.3
Поскольку является константой относительно , производная относительно равна .
Этап 8.1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 8.1.5
Добавим и .
Этап 8.2
Переформулируем задачу с помощью и .
Этап 9
Интеграл по имеет вид .
Этап 10
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 11
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 11.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 11.1.1
Перепишем.
Этап 11.1.2
Разделим на .
Этап 11.2
Переформулируем задачу с помощью и .
Этап 12
Вынесем знак минуса перед дробью.
Этап 13
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 14
Интеграл по имеет вид .
Этап 15
Упростим.
Этап 16
Выполним обратную подстановку для каждой подставленной переменной интегрирования.
Нажмите для увеличения количества этапов...
Этап 16.1
Заменим все вхождения на .
Этап 16.2
Заменим все вхождения на .
Этап 17
Упростим.
Нажмите для увеличения количества этапов...
Этап 17.1
Объединим числители над общим знаменателем.
Этап 17.2
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 17.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 17.3.1
Сократим общий множитель.
Этап 17.3.2
Перепишем это выражение.
Этап 18
Ответ ― первообразная функции .