Математический анализ Примеры

Этап 1
Продифференцируем, используя правило умножения на константу.
Нажмите для увеличения количества этапов...
Этап 1.1
Вынесем знак минуса перед дробью.
Этап 1.2
Поскольку является константой относительно , производная по равна .
Этап 2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.1
Чтобы применить цепное правило, зададим как .
Этап 3.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.3
Заменим все вхождения на .
Этап 4
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 4.1
Поскольку является константой относительно , производная по равна .
Этап 4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Умножим на .
Этап 4.3.2
Перенесем влево от .
Этап 4.3.3
Перепишем в виде .
Этап 4.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.5
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 4.5.1
Умножим на .
Этап 4.5.2
Умножим на .
Этап 4.5.3
Перенесем влево от .
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Перепишем, используя свойство коммутативности умножения.
Этап 5.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Вынесем множитель из .
Этап 5.2.2
Вынесем множитель из .
Этап 5.2.3
Вынесем множитель из .
Этап 5.3
Вынесем множитель из .
Этап 5.4
Перепишем в виде .
Этап 5.5
Вынесем множитель из .
Этап 5.6
Перепишем в виде .
Этап 5.7
Вынесем знак минуса перед дробью.
Этап 5.8
Умножим на .
Этап 5.9
Умножим на .