Математический анализ Примеры

Trovare la Derivata - d/dx y=arcsec( квадратный корень из 3x^3)
Этап 1
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 1.1
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Вынесем за скобки.
Этап 1.1.2
Изменим порядок и .
Этап 1.1.3
Добавим круглые скобки.
Этап 1.2
Вынесем члены из-под знака корня.
Этап 2
С помощью запишем в виде .
Этап 3
Вынесем множитель из .
Этап 4
Применим правило умножения к .
Этап 5
Возведем в степень .
Этап 6
Применим правило степени для объединения показателей.
Этап 7
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 7.1
Запишем в виде дроби с общим знаменателем.
Этап 7.2
Объединим числители над общим знаменателем.
Этап 7.3
Добавим и .
Этап 8
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 8.1
Чтобы применить цепное правило, зададим как .
Этап 8.2
Производная по равна .
Этап 8.3
Заменим все вхождения на .
Этап 9
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 9.1
Поскольку является константой относительно , производная по равна .
Этап 9.2
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 9.2.1
Объединим и .
Этап 9.2.2
Сократим общий множитель.
Этап 9.2.3
Перепишем это выражение.
Этап 9.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 10
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 11
Объединим и .
Этап 12
Объединим числители над общим знаменателем.
Этап 13
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 13.1
Умножим на .
Этап 13.2
Вычтем из .
Этап 14
Объединим и .
Этап 15
Умножим на .
Этап 16
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 16.1
Перенесем влево от .
Этап 16.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 17
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 17.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 17.1.1
Перенесем .
Этап 17.1.2
Применим правило степени для объединения показателей.
Этап 17.1.3
Объединим числители над общим знаменателем.
Этап 17.1.4
Добавим и .
Этап 17.1.5
Разделим на .
Этап 17.2
Упростим .
Этап 18
Упростим.
Нажмите для увеличения количества этапов...
Этап 18.1
Применим правило умножения к .
Этап 18.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 18.2.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 18.2.1.1
Применим правило степени и перемножим показатели, .
Этап 18.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 18.2.1.2.1
Сократим общий множитель.
Этап 18.2.1.2.2
Перепишем это выражение.
Этап 18.2.2
Найдем экспоненту.
Этап 18.2.3
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 18.2.3.1
Применим правило степени и перемножим показатели, .
Этап 18.2.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 18.2.3.2.1
Сократим общий множитель.
Этап 18.2.3.2.2
Перепишем это выражение.
Этап 18.3
Умножим на .
Этап 18.4
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 18.4.1
Умножим на .
Этап 18.4.2
Перенесем .
Этап 18.4.3
Возведем в степень .
Этап 18.4.4
Возведем в степень .
Этап 18.4.5
Применим правило степени для объединения показателей.
Этап 18.4.6
Добавим и .
Этап 18.4.7
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 18.4.7.1
С помощью запишем в виде .
Этап 18.4.7.2
Применим правило степени и перемножим показатели, .
Этап 18.4.7.3
Объединим и .
Этап 18.4.7.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 18.4.7.4.1
Сократим общий множитель.
Этап 18.4.7.4.2
Перепишем это выражение.
Этап 18.4.7.5
Упростим.