Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Этап 2.1
Найдем вторую производную.
Этап 2.1.1
Найдем первую производную.
Этап 2.1.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.1.2
Найдем значение .
Этап 2.1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.1.2.3
Умножим на .
Этап 2.1.1.2.4
Объединим и .
Этап 2.1.1.2.5
Объединим и .
Этап 2.1.1.2.6
Сократим общий множитель и .
Этап 2.1.1.2.6.1
Вынесем множитель из .
Этап 2.1.1.2.6.2
Сократим общие множители.
Этап 2.1.1.2.6.2.1
Вынесем множитель из .
Этап 2.1.1.2.6.2.2
Сократим общий множитель.
Этап 2.1.1.2.6.2.3
Перепишем это выражение.
Этап 2.1.1.2.7
Вынесем знак минуса перед дробью.
Этап 2.1.1.3
Найдем значение .
Этап 2.1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.1.3.3
Умножим на .
Этап 2.1.2
Найдем вторую производную.
Этап 2.1.2.1
По правилу суммы производная по имеет вид .
Этап 2.1.2.2
Найдем значение .
Этап 2.1.2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2.2.3
Умножим на .
Этап 2.1.2.2.4
Объединим и .
Этап 2.1.2.2.5
Умножим на .
Этап 2.1.2.2.6
Объединим и .
Этап 2.1.2.2.7
Сократим общий множитель и .
Этап 2.1.2.2.7.1
Вынесем множитель из .
Этап 2.1.2.2.7.2
Сократим общие множители.
Этап 2.1.2.2.7.2.1
Вынесем множитель из .
Этап 2.1.2.2.7.2.2
Сократим общий множитель.
Этап 2.1.2.2.7.2.3
Перепишем это выражение.
Этап 2.1.2.2.7.2.4
Разделим на .
Этап 2.1.2.3
Найдем значение .
Этап 2.1.2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2.3.3
Умножим на .
Этап 2.1.3
Вторая производная по равна .
Этап 2.2
Приравняем вторую производную к , затем найдем решение уравнения .
Этап 2.2.1
Пусть вторая производная равна .
Этап 2.2.2
Разложим левую часть уравнения на множители.
Этап 2.2.2.1
Перепишем в виде .
Этап 2.2.2.2
Пусть . Подставим вместо для всех.
Этап 2.2.2.3
Вынесем множитель из .
Этап 2.2.2.3.1
Вынесем множитель из .
Этап 2.2.2.3.2
Вынесем множитель из .
Этап 2.2.2.3.3
Вынесем множитель из .
Этап 2.2.2.4
Заменим все вхождения на .
Этап 2.2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.2.4
Приравняем к , затем решим относительно .
Этап 2.2.4.1
Приравняем к .
Этап 2.2.4.2
Решим относительно .
Этап 2.2.4.2.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 2.2.4.2.2
Упростим .
Этап 2.2.4.2.2.1
Перепишем в виде .
Этап 2.2.4.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.2.4.2.2.3
Плюс или минус равно .
Этап 2.2.5
Приравняем к , затем решим относительно .
Этап 2.2.5.1
Приравняем к .
Этап 2.2.5.2
Решим относительно .
Этап 2.2.5.2.1
Вычтем из обеих частей уравнения.
Этап 2.2.5.2.2
Разделим каждый член на и упростим.
Этап 2.2.5.2.2.1
Разделим каждый член на .
Этап 2.2.5.2.2.2
Упростим левую часть.
Этап 2.2.5.2.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 2.2.5.2.2.2.2
Разделим на .
Этап 2.2.5.2.2.3
Упростим правую часть.
Этап 2.2.5.2.2.3.1
Разделим на .
Этап 2.2.5.2.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 2.2.5.2.4
Упростим .
Этап 2.2.5.2.4.1
Перепишем в виде .
Этап 2.2.5.2.4.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.2.5.2.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.2.5.2.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.2.5.2.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.2.5.2.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.2.6
Окончательным решением являются все значения, при которых верно.
Этап 3
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 4
Создадим интервалы вокруг значений , в которых вторая производная равна нулю или не определена.
Этап 5
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Этап 5.2.1
Упростим каждый член.
Этап 5.2.1.1
Возведем в степень .
Этап 5.2.1.2
Умножим на .
Этап 5.2.1.3
Возведем в степень .
Этап 5.2.1.4
Умножим на .
Этап 5.2.2
Добавим и .
Этап 5.2.3
Окончательный ответ: .
Этап 5.3
График вогнут вниз на интервале , поскольку имеет отрицательное значение.
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Этап 6
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Этап 6.2.1
Упростим каждый член.
Этап 6.2.1.1
Возведем в степень .
Этап 6.2.1.2
Умножим на .
Этап 6.2.1.3
Возведем в степень .
Этап 6.2.1.4
Умножим на .
Этап 6.2.2
Добавим и .
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 7
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Этап 7.2.1
Упростим каждый член.
Этап 7.2.1.1
Возведем в степень .
Этап 7.2.1.2
Умножим на .
Этап 7.2.1.3
Возведем в степень .
Этап 7.2.1.4
Умножим на .
Этап 7.2.2
Добавим и .
Этап 7.2.3
Окончательный ответ: .
Этап 7.3
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 8
Этап 8.1
Заменим в этом выражении переменную на .
Этап 8.2
Упростим результат.
Этап 8.2.1
Упростим каждый член.
Этап 8.2.1.1
Возведем в степень .
Этап 8.2.1.2
Умножим на .
Этап 8.2.1.3
Возведем в степень .
Этап 8.2.1.4
Умножим на .
Этап 8.2.2
Добавим и .
Этап 8.2.3
Окончательный ответ: .
Этап 8.3
График вогнут вниз на интервале , поскольку имеет отрицательное значение.
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Этап 9
График вогнут вниз, когда вторая производная отрицательна, и вогнут вверх, когда вторая производная положительна.
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Этап 10