Математический анализ Примеры

Вычислим интеграл интеграл в пределах от 1 до e от 1/(y(1+ натуральный логарифм y)) по y
Этап 1
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Производная по равна .
Этап 1.2
Подставим нижнее предельное значение вместо в .
Этап 1.3
Натуральный логарифм равен .
Этап 1.4
Подставим верхнее предельное значение вместо в .
Этап 1.5
Натуральный логарифм равен .
Этап 1.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 1.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 2
Пусть . Тогда . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Дифференцируем .
Этап 2.1.2
По правилу суммы производная по имеет вид .
Этап 2.1.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.5
Добавим и .
Этап 2.2
Подставим нижнее предельное значение вместо в .
Этап 2.3
Добавим и .
Этап 2.4
Подставим верхнее предельное значение вместо в .
Этап 2.5
Добавим и .
Этап 2.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 2.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 3
Интеграл по имеет вид .
Этап 4
Найдем значение в и в .
Этап 5
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 6
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.2
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.3
Разделим на .
Этап 7
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: