Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Применим свойство дистрибутивности.
Этап 1.2
Применим свойство дистрибутивности.
Этап 1.3
Применим свойство дистрибутивности.
Этап 1.4
Изменим порядок и .
Этап 1.5
Изменим порядок и .
Этап 1.6
Возведем в степень .
Этап 1.7
Возведем в степень .
Этап 1.8
Применим правило степени для объединения показателей.
Этап 1.9
Добавим и .
Этап 1.10
Умножим на .
Этап 1.11
Умножим на .
Этап 1.12
Вычтем из .
Этап 2
Разделим данный интеграл на несколько интегралов.
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
По правилу степени интеграл по имеет вид .
Этап 5
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
По правилу степени интеграл по имеет вид .
Этап 7
Применим правило дифференцирования постоянных функций.
Этап 8
Этап 8.1
Упростим.
Этап 8.1.1
Объединим и .
Этап 8.1.2
Объединим и .
Этап 8.2
Упростим.
Этап 9
Изменим порядок членов.