Математический анализ Примеры

Найти первообразную (x^2+x+1)/(x+2)
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Разделим на .
Нажмите для увеличения количества этапов...
Этап 4.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
+++
Этап 4.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
+++
Этап 4.3
Умножим новое частное на делитель.
+++
++
Этап 4.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
+++
--
Этап 4.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
+++
--
-
Этап 4.6
Вынесем следующие члены из исходного делимого в текущее делимое.
+++
--
-+
Этап 4.7
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
-
+++
--
-+
Этап 4.8
Умножим новое частное на делитель.
-
+++
--
-+
--
Этап 4.9
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
-
+++
--
-+
++
Этап 4.10
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
-
+++
--
-+
++
+
Этап 4.11
Окончательный ответ: неполное частное плюс остаток, деленный на делитель.
Этап 5
Разделим данный интеграл на несколько интегралов.
Этап 6
По правилу степени интеграл по имеет вид .
Этап 7
Применим правило дифференцирования постоянных функций.
Этап 8
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Пусть . Тогда . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 9.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 9.1.1
Дифференцируем .
Этап 9.1.2
По правилу суммы производная по имеет вид .
Этап 9.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 9.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 9.1.5
Добавим и .
Этап 9.2
Переформулируем задачу с помощью и .
Этап 10
Интеграл по имеет вид .
Этап 11
Упростим.
Этап 12
Заменим все вхождения на .
Этап 13
Ответ ― первообразная функции .