Введите задачу...
Математический анализ Примеры
Этап 1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2
Этап 2.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
+ | - | + | + | + |
Этап 2.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
+ | - | + | + | + |
Этап 2.3
Умножим новое частное на делитель.
+ | - | + | + | + | |||||||||
+ | + | - |
Этап 2.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
+ | - | + | + | + | |||||||||
- | - | + |
Этап 2.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
+ | - | + | + | + | |||||||||
- | - | + | |||||||||||
+ |
Этап 2.6
Вынесем следующий член из исходного делимого в текущее делимое.
+ | - | + | + | + | |||||||||
- | - | + | |||||||||||
+ | + |
Этап 2.7
Окончательный ответ: неполное частное плюс остаток, деленный на делитель.
Этап 3
Разделим данный интеграл на несколько интегралов.
Этап 4
По правилу степени интеграл по имеет вид .
Этап 5
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
Этап 6.1
Пусть . Найдем .
Этап 6.1.1
Дифференцируем .
Этап 6.1.2
По правилу суммы производная по имеет вид .
Этап 6.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 6.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 6.1.5
Добавим и .
Этап 6.2
Переформулируем задачу с помощью и .
Этап 7
Этап 7.1
Умножим на .
Этап 7.2
Перенесем влево от .
Этап 7.3
Объединим и .
Этап 8
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Этап 9.1
Объединим и .
Этап 9.2
Сократим общий множитель и .
Этап 9.2.1
Вынесем множитель из .
Этап 9.2.2
Сократим общие множители.
Этап 9.2.2.1
Вынесем множитель из .
Этап 9.2.2.2
Сократим общий множитель.
Этап 9.2.2.3
Перепишем это выражение.
Этап 9.2.2.4
Разделим на .
Этап 10
Интеграл по имеет вид .
Этап 11
Упростим.
Этап 12
Заменим все вхождения на .
Этап 13
Этап 13.1
Объединим и .
Этап 13.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 13.3
Объединим и .
Этап 13.4
Объединим числители над общим знаменателем.
Этап 13.5
Сократим общий множитель .
Этап 13.5.1
Сократим общий множитель.
Этап 13.5.2
Перепишем это выражение.
Этап 13.6
Умножим на .