Математический анализ Примеры

Trovare la Derivata - d/dx (1- натуральный логарифм от x)/(x^2)
Этап 1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Применим правило степени и перемножим показатели, .
Этап 2.1.2
Умножим на .
Этап 2.2
По правилу суммы производная по имеет вид .
Этап 2.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.4
Добавим и .
Этап 2.5
Поскольку является константой относительно , производная по равна .
Этап 3
Производная по равна .
Этап 4
Продифференцируем, используя правило степени.
Нажмите для увеличения количества этапов...
Этап 4.1
Объединим и .
Этап 4.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Вынесем множитель из .
Этап 4.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Возведем в степень .
Этап 4.2.2.2
Вынесем множитель из .
Этап 4.2.2.3
Сократим общий множитель.
Этап 4.2.2.4
Перепишем это выражение.
Этап 4.2.2.5
Разделим на .
Этап 4.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.4
Упростим с помощью разложения.
Нажмите для увеличения количества этапов...
Этап 4.4.1
Умножим на .
Этап 4.4.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 4.4.2.1
Вынесем множитель из .
Этап 4.4.2.2
Вынесем множитель из .
Этап 4.4.2.3
Вынесем множитель из .
Этап 5
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.1
Вынесем множитель из .
Этап 5.2
Сократим общий множитель.
Этап 5.3
Перепишем это выражение.
Этап 6
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Применим свойство дистрибутивности.
Этап 6.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Умножим на .
Этап 6.2.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 6.2.1.2.1
Умножим на .
Этап 6.2.1.2.2
Упростим путем переноса под логарифм.
Этап 6.2.2
Вычтем из .
Этап 6.3
Перепишем в виде .
Этап 6.4
Вынесем множитель из .
Этап 6.5
Вынесем множитель из .
Этап 6.6
Вынесем знак минуса перед дробью.