Математический анализ Примеры

Этап 1
Продифференцируем обе части уравнения.
Этап 2
Продифференцируем левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.1.3
Заменим все вхождения на .
Этап 2.3.2
Перепишем в виде .
Этап 2.4
Изменим порядок членов.
Этап 3
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Перепишем в виде .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Добавим к обеим частям уравнения.
Этап 5.2
Добавим к обеим частям уравнения.
Этап 5.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Вынесем множитель из .
Этап 5.3.2
Вынесем множитель из .
Этап 5.3.3
Вынесем множитель из .
Этап 5.4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Разделим каждый член на .
Этап 5.4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.4.2.1.1
Сократим общий множитель.
Этап 5.4.2.1.2
Разделим на .
Этап 6
Заменим на .