Математический анализ Примеры

Вычислим интеграл интеграл x^3e^(6x^4) квадратный корень из (2e^(6x^4)+1)^5 по x
Этап 1
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
По правилу суммы производная по имеет вид .
Этап 1.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.3.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.1.3.2.3
Заменим все вхождения на .
Этап 1.1.3.3
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.5
Умножим на .
Этап 1.1.3.6
Умножим на .
Этап 1.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.5.1
Добавим и .
Этап 1.1.5.2
Изменим порядок множителей в .
Этап 1.2
Переформулируем задачу с помощью и .
Этап 2
Объединим и .
Этап 3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
С помощью запишем в виде .
Этап 5
По правилу степени интеграл по имеет вид .
Этап 6
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Перепишем в виде .
Этап 6.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Умножим на .
Этап 6.2.2
Умножим на .
Этап 6.2.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 6.2.3.1
Вынесем множитель из .
Этап 6.2.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 6.2.3.2.1
Вынесем множитель из .
Этап 6.2.3.2.2
Сократим общий множитель.
Этап 6.2.3.2.3
Перепишем это выражение.
Этап 7
Заменим все вхождения на .