Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Пусть , где . Тогда . Заметим, что поскольку , выражение положительно.
Этап 5
Этап 5.1
Упростим .
Этап 5.1.1
Применим формулу Пифагора.
Этап 5.1.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 5.2
Сократим общий множитель .
Этап 5.2.1
Вынесем множитель из .
Этап 5.2.2
Сократим общий множитель.
Этап 5.2.3
Перепишем это выражение.
Этап 6
Возведем в степень .
Этап 7
Вынесем за скобки.
Этап 8
Используя формулы Пифагора, запишем в виде .
Этап 9
Упростим.
Этап 10
Этап 10.1
Пусть . Найдем .
Этап 10.1.1
Дифференцируем .
Этап 10.1.2
Производная по равна .
Этап 10.2
Переформулируем задачу с помощью и .
Этап 11
Разделим данный интеграл на несколько интегралов.
Этап 12
Применим правило дифференцирования постоянных функций.
Этап 13
По правилу степени интеграл по имеет вид .
Этап 14
Упростим.
Этап 15
Этап 15.1
Заменим все вхождения на .
Этап 15.2
Заменим все вхождения на .
Этап 16
Ответ ― первообразная функции .