Математический анализ Примеры

Этап 1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3
Заменим все вхождения на .
Этап 2
По правилу суммы производная по имеет вид .
Этап 3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 4.1
Поскольку является константой относительно , производная относительно равна .
Этап 4.2
Добавим и .
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Применим свойство дистрибутивности.
Этап 5.2
Применим свойство дистрибутивности.
Этап 5.3
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 5.3.1.1
Перенесем .
Этап 5.3.1.2
Применим правило степени для объединения показателей.
Этап 5.3.1.3
Добавим и .
Этап 5.3.2
Умножим на .