Введите задачу...
Математический анализ Примеры
Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3
Заменим все вхождения на .
Этап 3
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Упростим члены.
Этап 3.2.1
Объединим и .
Этап 3.2.2
Объединим и .
Этап 3.2.3
Сократим общий множитель .
Этап 3.2.3.1
Сократим общий множитель.
Этап 3.2.3.2
Разделим на .
Этап 3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Умножим на .