Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Этап 4.1
Разложим дробь и умножим на общий знаменатель.
Этап 4.1.1
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку множитель в знаменателе линейный, поместим одну переменную на его место .
Этап 4.1.2
Умножим каждую дробь в уравнении на знаменатель исходного выражения. В этом случае знаменатель равен .
Этап 4.1.3
Сократим общий множитель .
Этап 4.1.3.1
Сократим общий множитель.
Этап 4.1.3.2
Перепишем это выражение.
Этап 4.1.4
Сократим общий множитель .
Этап 4.1.4.1
Сократим общий множитель.
Этап 4.1.4.2
Перепишем это выражение.
Этап 4.1.5
Упростим каждый член.
Этап 4.1.5.1
Сократим общий множитель .
Этап 4.1.5.1.1
Сократим общий множитель.
Этап 4.1.5.1.2
Разделим на .
Этап 4.1.5.2
Применим свойство дистрибутивности.
Этап 4.1.5.3
Умножим на .
Этап 4.1.5.4
Сократим общий множитель и .
Этап 4.1.5.4.1
Вынесем множитель из .
Этап 4.1.5.4.2
Сократим общие множители.
Этап 4.1.5.4.2.1
Возведем в степень .
Этап 4.1.5.4.2.2
Вынесем множитель из .
Этап 4.1.5.4.2.3
Сократим общий множитель.
Этап 4.1.5.4.2.4
Перепишем это выражение.
Этап 4.1.5.4.2.5
Разделим на .
Этап 4.1.5.5
Применим свойство дистрибутивности.
Этап 4.1.5.6
Умножим на .
Этап 4.1.5.7
Умножим на .
Этап 4.1.5.8
Применим свойство дистрибутивности.
Этап 4.1.5.9
Сократим общий множитель .
Этап 4.1.5.9.1
Сократим общий множитель.
Этап 4.1.5.9.2
Разделим на .
Этап 4.1.6
Упростим выражение.
Этап 4.1.6.1
Изменим порядок и .
Этап 4.1.6.2
Перенесем .
Этап 4.1.6.3
Перенесем .
Этап 4.1.6.4
Перенесем .
Этап 4.2
Составим уравнения для переменных элементарной дроби и используем их для создания системы уравнений.
Этап 4.2.1
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 4.2.2
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 4.2.3
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты членов, не содержащих . Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 4.2.4
Составим систему уравнений, чтобы найти коэффициенты элементарных дробей.
Этап 4.3
Решим систему уравнений.
Этап 4.3.1
Перепишем уравнение в виде .
Этап 4.3.2
Заменим все вхождения на во всех уравнениях.
Этап 4.3.2.1
Заменим все вхождения в на .
Этап 4.3.2.2
Упростим правую часть.
Этап 4.3.2.2.1
Избавимся от скобок.
Этап 4.3.3
Решим относительно в .
Этап 4.3.3.1
Перепишем уравнение в виде .
Этап 4.3.3.2
Вычтем из обеих частей уравнения.
Этап 4.3.4
Заменим все вхождения на во всех уравнениях.
Этап 4.3.4.1
Заменим все вхождения в на .
Этап 4.3.4.2
Упростим правую часть.
Этап 4.3.4.2.1
Избавимся от скобок.
Этап 4.3.5
Решим относительно в .
Этап 4.3.5.1
Перепишем уравнение в виде .
Этап 4.3.5.2
Добавим к обеим частям уравнения.
Этап 4.3.6
Решим систему уравнений.
Этап 4.3.7
Перечислим все решения.
Этап 4.4
Заменим каждый коэффициент элементарной дроби в значениями, найденными для , и .
Этап 4.5
Вынесем знак минуса перед дробью.
Этап 5
Разделим данный интеграл на несколько интегралов.
Этап 6
Этап 6.1
Вынесем из знаменателя, возведя в степень.
Этап 6.2
Перемножим экспоненты в .
Этап 6.2.1
Применим правило степени и перемножим показатели, .
Этап 6.2.2
Умножим на .
Этап 7
По правилу степени интеграл по имеет вид .
Этап 8
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Интеграл по имеет вид .
Этап 10
Этап 10.1
Пусть . Найдем .
Этап 10.1.1
Дифференцируем .
Этап 10.1.2
По правилу суммы производная по имеет вид .
Этап 10.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 10.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 10.1.5
Добавим и .
Этап 10.2
Переформулируем задачу с помощью и .
Этап 11
Интеграл по имеет вид .
Этап 12
Упростим.
Этап 13
Заменим все вхождения на .
Этап 14
Ответ ― первообразная функции .