Математический анализ Примеры

Вычислить при помощи правила Лопиталя предел (x^2-1+ натуральный логарифм x)/(e^x-e), когда x стремится к 1
Этап 1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.2.2
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.2.3
Найдем предел , который является константой по мере приближения к .
Этап 1.2.4
Внесем предел под знак логарифма.
Этап 1.2.5
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 1.2.5.1
Найдем предел , подставив значение для .
Этап 1.2.5.2
Найдем предел , подставив значение для .
Этап 1.2.6
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.2.6.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.6.1.1
Единица в любой степени равна единице.
Этап 1.2.6.1.2
Умножим на .
Этап 1.2.6.1.3
Натуральный логарифм равен .
Этап 1.2.6.2
Вычтем из .
Этап 1.2.6.3
Добавим и .
Этап 1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.3.1.2
Внесем предел под знак экспоненты.
Этап 1.3.1.3
Найдем предел , который является константой по мере приближения к .
Этап 1.3.2
Найдем предел , подставив значение для .
Этап 1.3.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.3.3.1
Упростим.
Этап 1.3.3.2
Вычтем из .
Этап 1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
По правилу суммы производная по имеет вид .
Этап 3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.5
Производная по равна .
Этап 3.6
Добавим и .
Этап 3.7
По правилу суммы производная по имеет вид .
Этап 3.8
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.9
Поскольку является константой относительно , производная относительно равна .
Этап 3.10
Добавим и .
Этап 4
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 4.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.2
Объединим числители над общим знаменателем.
Этап 5
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 6
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 7
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 8
Вынесем член из-под знака предела, так как он не зависит от .
Этап 9
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 10
Найдем предел , который является константой по мере приближения к .
Этап 11
Внесем предел под знак экспоненты.
Этап 12
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 12.1
Найдем предел , подставив значение для .
Этап 12.2
Найдем предел , подставив значение для .
Этап 12.3
Найдем предел , подставив значение для .
Этап 12.4
Найдем предел , подставив значение для .
Этап 13
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 13.1
Разделим на .
Этап 13.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 13.2.1
Умножим .
Нажмите для увеличения количества этапов...
Этап 13.2.1.1
Умножим на .
Этап 13.2.1.2
Умножим на .
Этап 13.2.2
Добавим и .
Этап 13.3
Упростим.