Математический анализ Примеры

Найти первообразную f(x)=1/3cos(6x)-4sin(4x)
Этап 1
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 2
Составим интеграл, чтобы решить его.
Этап 3
Разделим данный интеграл на несколько интегралов.
Этап 4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 5.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 5.1.1
Дифференцируем .
Этап 5.1.2
Поскольку является константой относительно , производная по равна .
Этап 5.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.4
Умножим на .
Этап 5.2
Переформулируем задачу с помощью и .
Этап 6
Объединим и .
Этап 7
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 8
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.1
Умножим на .
Этап 8.2
Умножим на .
Этап 9
Интеграл по имеет вид .
Этап 10
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 11
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 11.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 11.1.1
Дифференцируем .
Этап 11.1.2
Поскольку является константой относительно , производная по равна .
Этап 11.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 11.1.4
Умножим на .
Этап 11.2
Переформулируем задачу с помощью и .
Этап 12
Объединим и .
Этап 13
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 14
Упростим.
Нажмите для увеличения количества этапов...
Этап 14.1
Объединим и .
Этап 14.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 14.2.1
Вынесем множитель из .
Этап 14.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 14.2.2.1
Вынесем множитель из .
Этап 14.2.2.2
Сократим общий множитель.
Этап 14.2.2.3
Перепишем это выражение.
Этап 14.2.2.4
Разделим на .
Этап 15
Интеграл по имеет вид .
Этап 16
Упростим.
Нажмите для увеличения количества этапов...
Этап 16.1
Упростим.
Этап 16.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 16.2.1
Умножим на .
Этап 16.2.2
Умножим на .
Этап 17
Выполним обратную подстановку для каждой подставленной переменной интегрирования.
Нажмите для увеличения количества этапов...
Этап 17.1
Заменим все вхождения на .
Этап 17.2
Заменим все вхождения на .
Этап 18
Ответ ― первообразная функции .