Математический анализ Примеры

Trovare la Retta Tangente in (1,2) f(x)=2x^3 at (1,2)
at
Этап 1
Найдем первую производную и вычислим ее значения в точках и , чтобы найти угловой коэффициент касательной.
Нажмите для увеличения количества этапов...
Этап 1.1
Поскольку является константой относительно , производная по равна .
Этап 1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3
Умножим на .
Этап 1.4
Найдем производную в .
Этап 1.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Единица в любой степени равна единице.
Этап 1.5.2
Умножим на .
Этап 2
Подставим угловой коэффициент и координаты точки в уравнение прямой с угловым коэффициентом и заданной точкой и решим его относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 2.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 2.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Перепишем.
Этап 2.3.1.2
Упростим путем добавления нулей.
Этап 2.3.1.3
Применим свойство дистрибутивности.
Этап 2.3.1.4
Умножим на .
Этап 2.3.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Добавим к обеим частям уравнения.
Этап 2.3.2.2
Добавим и .
Этап 3