Математический анализ Примеры

Оценить предел предел ((x+2)(x+5)(x-5))/(13(x+3)(x+5)), если x стремится к negative infinity
Этап 1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1
Сократим общий множитель.
Этап 1.2
Перепишем это выражение.
Этап 2
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Возьмем предел числителя и предел знаменателя.
Этап 2.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Применим свойство дистрибутивности.
Этап 2.1.2.2
Применим свойство дистрибутивности.
Этап 2.1.2.3
Применим свойство дистрибутивности.
Этап 2.1.2.4
Изменим порядок и .
Этап 2.1.2.5
Возведем в степень .
Этап 2.1.2.6
Возведем в степень .
Этап 2.1.2.7
Применим правило степени для объединения показателей.
Этап 2.1.2.8
Упростим путем добавления членов.
Нажмите для увеличения количества этапов...
Этап 2.1.2.8.1
Добавим и .
Этап 2.1.2.8.2
Умножим на .
Этап 2.1.2.8.3
Добавим и .
Этап 2.1.2.9
Для многочлена четной степени, старший коэффициент которого положителен, предел в минус бесконечности равен бесконечности.
Этап 2.1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 2.1.3.1
Упростим путем перемножения.
Нажмите для увеличения количества этапов...
Этап 2.1.3.1.1
Применим свойство дистрибутивности.
Этап 2.1.3.1.2
Умножим на .
Этап 2.1.3.2
Для многочлена нечетной степени, старший коэффициент которого положителен, предел в минус бесконечности равен минус бесконечности.
Этап 2.1.3.3
Деление бесконечности на бесконечность не определено.
Неопределенные
Этап 2.1.4
Деление бесконечности на бесконечность не определено.
Неопределенные
Этап 2.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 2.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Продифференцируем числитель и знаменатель.
Этап 2.3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.3.3
По правилу суммы производная по имеет вид .
Этап 2.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.5
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.6
Добавим и .
Этап 2.3.7
Умножим на .
Этап 2.3.8
По правилу суммы производная по имеет вид .
Этап 2.3.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.10
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.11
Добавим и .
Этап 2.3.12
Умножим на .
Этап 2.3.13
Добавим и .
Этап 2.3.14
Вычтем из .
Этап 2.3.15
Поскольку является константой относительно , производная по равна .
Этап 2.3.16
По правилу суммы производная по имеет вид .
Этап 2.3.17
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.18
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.19
Добавим и .
Этап 2.3.20
Умножим на .
Этап 3
Разобьем дробь на две дроби.
Этап 4
Для многочлена нечетной степени, старший коэффициент которого положителен, предел в минус бесконечности равен минус бесконечности.