Математический анализ Примеры

Найти первообразную натуральный логарифм 1-x
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Проинтегрируем по частям, используя формулу , где и .
Этап 5
Объединим и .
Этап 6
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 7.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.1.1
Умножим на .
Этап 7.1.2
Умножим на .
Этап 7.2
Изменим порядок и .
Этап 8
Разделим на .
Нажмите для увеличения количества этапов...
Этап 8.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
-++
Этап 8.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
-
-++
Этап 8.3
Умножим новое частное на делитель.
-
-++
+-
Этап 8.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
-
-++
-+
Этап 8.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
-
-++
-+
+
Этап 8.6
Окончательный ответ: неполное частное плюс остаток, деленный на делитель.
Этап 9
Разделим данный интеграл на несколько интегралов.
Этап 10
Применим правило дифференцирования постоянных функций.
Этап 11
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 11.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 11.1.1
Перепишем.
Этап 11.1.2
Разделим на .
Этап 11.2
Переформулируем задачу с помощью и .
Этап 12
Вынесем знак минуса перед дробью.
Этап 13
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 14
Интеграл по имеет вид .
Этап 15
Упростим.
Этап 16
Заменим все вхождения на .
Этап 17
Ответ ― первообразная функции .