Математический анализ Примеры

Этап 1
Продифференцируем обе части уравнения.
Этап 2
Производная по равна .
Этап 3
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Чтобы применить цепное правило, зададим как .
Этап 3.1.2
Производная по равна .
Этап 3.1.3
Заменим все вхождения на .
Этап 3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.3
Производная по равна .
Этап 3.4
Продифференцируем, используя правило степени.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4.2
Умножим на .
Этап 3.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.5.1
Применим свойство дистрибутивности.
Этап 3.5.2
Изменим порядок членов.
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Заменим на .