Введите задачу...
Математический анализ Примеры
Этап 1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2
Этап 2.1
Найдем предел числителя и предел знаменателя.
Этап 2.1.1
Возьмем предел числителя и предел знаменателя.
Этап 2.1.2
Найдем предел числителя.
Этап 2.1.2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.1.2.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.1.2.3
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 2.1.2.4
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.1.2.5
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 2.1.2.6
Найдем значения пределов, подставив значение для всех вхождений .
Этап 2.1.2.6.1
Найдем предел , подставив значение для .
Этап 2.1.2.6.2
Найдем предел , подставив значение для .
Этап 2.1.2.7
Упростим ответ.
Этап 2.1.2.7.1
Упростим каждый член.
Этап 2.1.2.7.1.1
Возведение в любую положительную степень дает .
Этап 2.1.2.7.1.2
Умножим на .
Этап 2.1.2.7.1.3
Возведение в любую положительную степень дает .
Этап 2.1.2.7.1.4
Умножим на .
Этап 2.1.2.7.2
Добавим и .
Этап 2.1.3
Найдем предел знаменателя.
Этап 2.1.3.1
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 2.1.3.2
Найдем предел , подставив значение для .
Этап 2.1.3.3
Возведение в любую положительную степень дает .
Этап 2.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 2.3
Найдем производную числителя и знаменателя.
Этап 2.3.1
Продифференцируем числитель и знаменатель.
Этап 2.3.2
По правилу суммы производная по имеет вид .
Этап 2.3.3
Найдем значение .
Этап 2.3.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3.3
Умножим на .
Этап 2.3.4
Найдем значение .
Этап 2.3.4.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.4.3
Умножим на .
Этап 2.3.5
Изменим порядок членов.
Этап 2.3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4
Этап 4.1
Найдем предел числителя и предел знаменателя.
Этап 4.1.1
Возьмем предел числителя и предел знаменателя.
Этап 4.1.2
Найдем предел числителя.
Этап 4.1.2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 4.1.2.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.1.2.3
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 4.1.2.4
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.1.2.5
Найдем значения пределов, подставив значение для всех вхождений .
Этап 4.1.2.5.1
Найдем предел , подставив значение для .
Этап 4.1.2.5.2
Найдем предел , подставив значение для .
Этап 4.1.2.6
Упростим ответ.
Этап 4.1.2.6.1
Упростим каждый член.
Этап 4.1.2.6.1.1
Возведение в любую положительную степень дает .
Этап 4.1.2.6.1.2
Умножим на .
Этап 4.1.2.6.1.3
Умножим на .
Этап 4.1.2.6.2
Добавим и .
Этап 4.1.3
Найдем предел , подставив значение для .
Этап 4.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 4.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 4.3
Найдем производную числителя и знаменателя.
Этап 4.3.1
Продифференцируем числитель и знаменатель.
Этап 4.3.2
По правилу суммы производная по имеет вид .
Этап 4.3.3
Найдем значение .
Этап 4.3.3.1
Поскольку является константой относительно , производная по равна .
Этап 4.3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3.3.3
Умножим на .
Этап 4.3.4
Найдем значение .
Этап 4.3.4.1
Поскольку является константой относительно , производная по равна .
Этап 4.3.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3.4.3
Умножим на .
Этап 4.3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.4
Разделим на .
Этап 5
Этап 5.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 5.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 5.3
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 5.4
Найдем предел , который является константой по мере приближения к .
Этап 6
Найдем предел , подставив значение для .
Этап 7
Этап 7.1
Вынесем знак минуса перед дробью.
Этап 7.2
Умножим .
Этап 7.2.1
Умножим на .
Этап 7.2.2
Умножим на .
Этап 7.3
Упростим каждый член.
Этап 7.3.1
Возведение в любую положительную степень дает .
Этап 7.3.2
Умножим на .
Этап 7.4
Добавим и .
Этап 7.5
Сократим общий множитель .
Этап 7.5.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 7.5.2
Вынесем множитель из .
Этап 7.5.3
Вынесем множитель из .
Этап 7.5.4
Сократим общий множитель.
Этап 7.5.5
Перепишем это выражение.
Этап 7.6
Объединим и .
Этап 7.7
Умножим на .
Этап 7.8
Вынесем знак минуса перед дробью.
Этап 8
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: