Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3
Поскольку является константой относительно , производная относительно равна .
Этап 1.4
Добавим и .
Этап 2
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Умножим на .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Этап 4.1
Найдем первую производную.
Этап 4.1.1
По правилу суммы производная по имеет вид .
Этап 4.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.3
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.4
Добавим и .
Этап 4.2
Первая производная по равна .
Этап 5
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Разделим каждый член на и упростим.
Этап 5.2.1
Разделим каждый член на .
Этап 5.2.2
Упростим левую часть.
Этап 5.2.2.1
Сократим общий множитель .
Этап 5.2.2.1.1
Сократим общий множитель.
Этап 5.2.2.1.2
Разделим на .
Этап 5.2.3
Упростим правую часть.
Этап 5.2.3.1
Разделим на .
Этап 5.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 5.4
Упростим .
Этап 5.4.1
Перепишем в виде .
Этап 5.4.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 5.4.3
Плюс или минус равно .
Этап 6
Этап 6.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Умножим на .
Этап 10
Этап 10.1
Разобьем на отдельные интервалы в окрестности значений , при которых первая производная равна или не определена.
Этап 10.2
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Этап 10.2.1
Заменим в этом выражении переменную на .
Этап 10.2.2
Упростим результат.
Этап 10.2.2.1
Возведем в степень .
Этап 10.2.2.2
Умножим на .
Этап 10.2.2.3
Окончательный ответ: .
Этап 10.3
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Этап 10.3.1
Заменим в этом выражении переменную на .
Этап 10.3.2
Упростим результат.
Этап 10.3.2.1
Возведем в степень .
Этап 10.3.2.2
Умножим на .
Этап 10.3.2.3
Окончательный ответ: .
Этап 10.4
Поскольку первая производная не меняет знак в окрестности , в этой точке нет ни локального максимума, ни локального минимума.
Не локальный максимум или минимум
Этап 10.5
Локальный минимум или минимум для не найден.
Нет локального максимума или минимума
Нет локального максимума или минимума
Этап 11