Математический анализ Примеры

Оценить предел предел ((3x-1)^5+1)/(5x), если x стремится к 0
Этап 1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Возьмем предел числителя и предел знаменателя.
Этап 2.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.1.2.1.2
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 2.1.2.1.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.1.2.1.4
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.1.2.1.5
Найдем предел , который является константой по мере приближения к .
Этап 2.1.2.1.6
Найдем предел , который является константой по мере приближения к .
Этап 2.1.2.2
Найдем предел , подставив значение для .
Этап 2.1.2.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 2.1.2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1.2.3.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1.2.3.1.1.1
Умножим на .
Этап 2.1.2.3.1.1.2
Умножим на .
Этап 2.1.2.3.1.2
Вычтем из .
Этап 2.1.2.3.1.3
Возведем в степень .
Этап 2.1.2.3.2
Добавим и .
Этап 2.1.3
Найдем предел , подставив значение для .
Этап 2.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 2.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Продифференцируем числитель и знаменатель.
Этап 2.3.2
По правилу суммы производная по имеет вид .
Этап 2.3.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.3.3.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.3.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3.1.3
Заменим все вхождения на .
Этап 2.3.3.2
По правилу суммы производная по имеет вид .
Этап 2.3.3.3
Поскольку является константой относительно , производная по равна .
Этап 2.3.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3.5
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.3.6
Умножим на .
Этап 2.3.3.7
Добавим и .
Этап 2.3.3.8
Умножим на .
Этап 2.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.5
Добавим и .
Этап 2.3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4
Разделим на .
Этап 3
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 3.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.2
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 3.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 3.4
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.5
Найдем предел , который является константой по мере приближения к .
Этап 4
Найдем предел , подставив значение для .
Этап 5
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 5.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.1.1
Вынесем множитель из .
Этап 5.1.2
Сократим общий множитель.
Этап 5.1.3
Перепишем это выражение.
Этап 5.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Умножим на .
Этап 5.2.2
Умножим на .
Этап 5.3
Вычтем из .
Этап 5.4
Возведем в степень .
Этап 5.5
Умножим на .