Математический анализ Примеры

Найти максимальное/минимальное значение y=1-3cos(3(x-pi/3))
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.2
Поскольку является константой относительно , производная относительно равна .
Этап 1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.2.2.2
Производная по равна .
Этап 1.2.2.3
Заменим все вхождения на .
Этап 1.2.3
Поскольку является константой относительно , производная по равна .
Этап 1.2.4
По правилу суммы производная по имеет вид .
Этап 1.2.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.6
Поскольку является константой относительно , производная относительно равна .
Этап 1.2.7
Добавим и .
Этап 1.2.8
Умножим на .
Этап 1.2.9
Умножим на .
Этап 1.2.10
Умножим на .
Этап 1.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Применим свойство дистрибутивности.
Этап 1.3.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.3.2.1
Умножим на .
Этап 1.3.2.2
Объединим и .
Этап 1.3.2.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.3.2.3.1
Вынесем множитель из .
Этап 1.3.2.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.3.2.3.2.1
Вынесем множитель из .
Этап 1.3.2.3.2.2
Сократим общий множитель.
Этап 1.3.2.3.2.3
Перепишем это выражение.
Этап 1.3.2.3.2.4
Разделим на .
Этап 1.3.2.4
Добавим и .
Этап 2
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2
Производная по равна .
Этап 2.2.3
Заменим все вхождения на .
Этап 2.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.3.1
По правилу суммы производная по имеет вид .
Этап 2.3.2
Поскольку является константой относительно , производная по равна .
Этап 2.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.4
Умножим на .
Этап 2.3.5
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.6
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.3.6.1
Добавим и .
Этап 2.3.6.2
Умножим на .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Разделим каждый член на .
Этап 4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Сократим общий множитель.
Этап 4.2.1.2
Разделим на .
Этап 4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Разделим на .
Этап 5
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 6
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.1
Точное значение : .
Этап 7
Добавим к обеим частям уравнения.
Этап 8
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 8.1
Разделим каждый член на .
Этап 8.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.2.1.1
Сократим общий множитель.
Этап 8.2.1.2
Разделим на .
Этап 9
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 10
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 10.1
Вычтем из .
Этап 10.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 10.2.1
Добавим к обеим частям уравнения.
Этап 10.2.2
Добавим и .
Этап 10.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 10.3.1
Разделим каждый член на .
Этап 10.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 10.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 10.3.2.1.1
Сократим общий множитель.
Этап 10.3.2.1.2
Разделим на .
Этап 11
Решение уравнения .
Этап 12
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 13
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 13.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 13.1.1
Сократим общий множитель.
Этап 13.1.2
Перепишем это выражение.
Этап 13.2
Вычтем из .
Этап 13.3
Точное значение : .
Этап 13.4
Умножим на .
Этап 14
 — локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
 — локальный минимум
Этап 15
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 15.1
Заменим в этом выражении переменную на .
Этап 15.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 15.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 15.2.1.1
Объединим числители над общим знаменателем.
Этап 15.2.1.2
Вычтем из .
Этап 15.2.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 15.2.1.3.1
Сократим общий множитель.
Этап 15.2.1.3.2
Перепишем это выражение.
Этап 15.2.1.4
Точное значение : .
Этап 15.2.1.5
Умножим на .
Этап 15.2.2
Вычтем из .
Этап 15.2.3
Окончательный ответ: .
Этап 16
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 17
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 17.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 17.1.1
Сократим общий множитель.
Этап 17.1.2
Перепишем это выражение.
Этап 17.2
Вычтем из .
Этап 17.3
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как косинус отрицательный во втором квадранте.
Этап 17.4
Точное значение : .
Этап 17.5
Умножим .
Нажмите для увеличения количества этапов...
Этап 17.5.1
Умножим на .
Этап 17.5.2
Умножим на .
Этап 18
 — локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
 — локальный максимум
Этап 19
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 19.1
Заменим в этом выражении переменную на .
Этап 19.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 19.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 19.2.1.1
Объединим числители над общим знаменателем.
Этап 19.2.1.2
Вычтем из .
Этап 19.2.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 19.2.1.3.1
Сократим общий множитель.
Этап 19.2.1.3.2
Перепишем это выражение.
Этап 19.2.1.4
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как косинус отрицательный во втором квадранте.
Этап 19.2.1.5
Точное значение : .
Этап 19.2.1.6
Умножим .
Нажмите для увеличения количества этапов...
Этап 19.2.1.6.1
Умножим на .
Этап 19.2.1.6.2
Умножим на .
Этап 19.2.2
Добавим и .
Этап 19.2.3
Окончательный ответ: .
Этап 20
Это локальные экстремумы .
 — локальный минимум
 — локальный максимум
Этап 21