Математический анализ Примеры

Этап 1
Продифференцируем обе части уравнения.
Этап 2
Продифференцируем левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.4
Перепишем в виде .
Этап 2.3.5
Умножим на .
Этап 2.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Применим свойство дистрибутивности.
Этап 2.4.2
Избавимся от ненужных скобок.
Этап 2.4.3
Изменим порядок членов.
Этап 3
Поскольку является константой относительно , производная относительно равна .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Добавим к обеим частям уравнения.
Этап 5.1.2
Вычтем из обеих частей уравнения.
Этап 5.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Разделим каждый член на .
Этап 5.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 5.2.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.2.2.1
Сократим общий множитель.
Этап 5.2.2.2.2
Разделим на .
Этап 5.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.3.1.1
Вынесем знак минуса перед дробью.
Этап 5.2.3.1.2
Деление двух отрицательных значений дает положительное значение.
Этап 6
Заменим на .