Математический анализ Примеры

Оценить предел предел (z-2)/( квадратный корень из 3-z-1), когда z стремится к 2
Этап 1
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.1.2
Найдем предел , который является константой по мере приближения к .
Этап 1.1.2.2
Найдем предел , подставив значение для .
Этап 1.1.2.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.1
Умножим на .
Этап 1.1.2.3.2
Вычтем из .
Этап 1.1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.3.2
Внесем предел под знак радикала.
Этап 1.1.3.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.3.4
Найдем предел , который является константой по мере приближения к .
Этап 1.1.3.5
Найдем предел , который является константой по мере приближения к .
Этап 1.1.3.6
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 1.1.3.6.1
Найдем предел , подставив значение для .
Этап 1.1.3.6.2
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.1.3.6.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.3.6.2.1.1
Вычтем из .
Этап 1.1.3.6.2.1.2
Любой корень из равен .
Этап 1.1.3.6.2.1.3
Умножим на .
Этап 1.1.3.6.2.2
Вычтем из .
Этап 1.1.3.6.2.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.3.6.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.3.7
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
По правилу суммы производная по имеет вид .
Этап 1.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.5
Добавим и .
Этап 1.3.6
По правилу суммы производная по имеет вид .
Этап 1.3.7
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.7.1
С помощью запишем в виде .
Этап 1.3.7.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.3.7.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.7.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.7.2.3
Заменим все вхождения на .
Этап 1.3.7.3
По правилу суммы производная по имеет вид .
Этап 1.3.7.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.7.5
Поскольку является константой относительно , производная по равна .
Этап 1.3.7.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.7.7
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.3.7.8
Объединим и .
Этап 1.3.7.9
Объединим числители над общим знаменателем.
Этап 1.3.7.10
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.3.7.10.1
Умножим на .
Этап 1.3.7.10.2
Вычтем из .
Этап 1.3.7.11
Вынесем знак минуса перед дробью.
Этап 1.3.7.12
Умножим на .
Этап 1.3.7.13
Вычтем из .
Этап 1.3.7.14
Объединим и .
Этап 1.3.7.15
Объединим и .
Этап 1.3.7.16
Перенесем влево от .
Этап 1.3.7.17
Перепишем в виде .
Этап 1.3.7.18
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.3.7.19
Вынесем знак минуса перед дробью.
Этап 1.3.8
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.9
Добавим и .
Этап 1.4
Умножим числитель на величину, обратную знаменателю.
Этап 1.5
Перепишем в виде .
Этап 1.6
Объединим множители.
Нажмите для увеличения количества этапов...
Этап 1.6.1
Умножим на .
Этап 1.6.2
Умножим на .
Этап 2
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.2
Внесем предел под знак радикала.
Этап 2.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.4
Найдем предел , который является константой по мере приближения к .
Этап 2.5
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 2.5.1
Найдем предел , подставив значение для .
Этап 2.5.2
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 2.5.2.1
Вычтем из .
Этап 2.5.2.2
Любой корень из равен .
Этап 2.5.2.3
Умножим на .