Математический анализ Примеры

Вычислим интеграл интеграл (-4/(x^3)-8/(x^5)) по x
Этап 1
Избавимся от скобок.
Этап 2
Разделим данный интеграл на несколько интегралов.
Этап 3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 5.1
Умножим на .
Этап 5.2
Вынесем из знаменателя, возведя в степень.
Этап 5.3
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Применим правило степени и перемножим показатели, .
Этап 5.3.2
Умножим на .
Этап 6
По правилу степени интеграл по имеет вид .
Этап 7
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Объединим и .
Этап 7.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 8
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 10
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 10.1
Умножим на .
Этап 10.2
Вынесем из знаменателя, возведя в степень.
Этап 10.3
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 10.3.1
Применим правило степени и перемножим показатели, .
Этап 10.3.2
Умножим на .
Этап 11
По правилу степени интеграл по имеет вид .
Этап 12
Упростим.
Нажмите для увеличения количества этапов...
Этап 12.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 12.1.1
Объединим и .
Этап 12.1.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 12.2
Упростим.
Этап 12.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 12.3.1
Умножим на .
Этап 12.3.2
Объединим и .
Этап 12.3.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 12.3.3.1
Вынесем множитель из .
Этап 12.3.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 12.3.3.2.1
Вынесем множитель из .
Этап 12.3.3.2.2
Сократим общий множитель.
Этап 12.3.3.2.3
Перепишем это выражение.