Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем обе части уравнения.
Этап 2
Производная по равна .
Этап 3
Этап 3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.1.1
Чтобы применить цепное правило, зададим как .
Этап 3.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.1.3
Заменим все вхождения на .
Этап 3.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.3
Объединим и .
Этап 3.4
Объединим числители над общим знаменателем.
Этап 3.5
Упростим числитель.
Этап 3.5.1
Умножим на .
Этап 3.5.2
Вычтем из .
Этап 3.6
Объединим дроби.
Этап 3.6.1
Вынесем знак минуса перед дробью.
Этап 3.6.2
Объединим и .
Этап 3.6.3
Упростим выражение.
Этап 3.6.3.1
Перенесем влево от .
Этап 3.6.3.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 3.7
По правилу суммы производная по имеет вид .
Этап 3.8
Поскольку является константой относительно , производная по равна .
Этап 3.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.10
Умножим на .
Этап 3.11
Поскольку является константой относительно , производная по равна .
Этап 3.12
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.13
Умножим на .
Этап 3.14
Поскольку является константой относительно , производная относительно равна .
Этап 3.15
Добавим и .
Этап 3.16
Упростим.
Этап 3.16.1
Изменим порядок множителей в .
Этап 3.16.2
Применим свойство дистрибутивности.
Этап 3.16.3
Умножим на .
Этап 3.16.4
Умножим на .
Этап 3.16.5
Умножим на .
Этап 3.16.6
Вынесем множитель из .
Этап 3.16.7
Сократим общие множители.
Этап 3.16.7.1
Вынесем множитель из .
Этап 3.16.7.2
Сократим общий множитель.
Этап 3.16.7.3
Перепишем это выражение.
Этап 3.16.8
Перенесем влево от .
Этап 3.16.9
Вынесем множитель из .
Этап 3.16.10
Перепишем в виде .
Этап 3.16.11
Вынесем множитель из .
Этап 3.16.12
Перепишем в виде .
Этап 3.16.13
Вынесем знак минуса перед дробью.
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Заменим на .