Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем обе части уравнения.
Этап 2
Производная по равна .
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Найдем значение .
Этап 3.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 3.2.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.2.1.3
Заменим все вхождения на .
Этап 3.2.2
Поскольку является константой относительно , производная по равна .
Этап 3.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.4
Умножим на .
Этап 3.2.5
Перенесем влево от .
Этап 3.2.6
Перепишем в виде .
Этап 3.3
Найдем значение .
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.3.3.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.3.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.3.3.3
Заменим все вхождения на .
Этап 3.3.4
Поскольку является константой относительно , производная по равна .
Этап 3.3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.7
Умножим на .
Этап 3.3.8
Перенесем влево от .
Этап 3.3.9
Перепишем в виде .
Этап 3.3.10
Умножим на .
Этап 3.4
Найдем значение .
Этап 3.4.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.4.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.4.2.1
Чтобы применить цепное правило, зададим как .
Этап 3.4.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.4.2.3
Заменим все вхождения на .
Этап 3.4.3
Поскольку является константой относительно , производная по равна .
Этап 3.4.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4.6
Умножим на .
Этап 3.4.7
Перенесем влево от .
Этап 3.4.8
Перепишем в виде .
Этап 3.5
Упростим.
Этап 3.5.1
Применим свойство дистрибутивности.
Этап 3.5.2
Объединим термины.
Этап 3.5.2.1
Умножим на .
Этап 3.5.2.2
Добавим и .
Этап 3.5.2.3
Добавим и .
Этап 3.5.2.3.1
Перенесем .
Этап 3.5.2.3.2
Добавим и .
Этап 3.5.2.4
Добавим и .
Этап 3.5.3
Изменим порядок членов.
Этап 3.5.4
Изменим порядок множителей в .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Заменим на .