Математический анализ Примеры

Вычислим интеграл интеграл в пределах от -1 до 1 от (1+ квадратный корень из 1-x^2) по x
Этап 1
Избавимся от скобок.
Этап 2
Разделим данный интеграл на несколько интегралов.
Этап 3
Применим правило дифференцирования постоянных функций.
Этап 4
Пусть , где . Тогда . Заметим, что поскольку , выражение положительно.
Этап 5
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 5.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.1.1
Применим формулу Пифагора.
Этап 5.1.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 5.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Возведем в степень .
Этап 5.2.2
Возведем в степень .
Этап 5.2.3
Применим правило степени для объединения показателей.
Этап 5.2.4
Добавим и .
Этап 6
Используем формулу половинного угла для записи в виде .
Этап 7
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 8
Разделим данный интеграл на несколько интегралов.
Этап 9
Применим правило дифференцирования постоянных функций.
Этап 10
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 10.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 10.1.1
Дифференцируем .
Этап 10.1.2
Поскольку является константой относительно , производная по равна .
Этап 10.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 10.1.4
Умножим на .
Этап 10.2
Подставим нижнее предельное значение вместо в .
Этап 10.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 10.3.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 10.3.2
Сократим общий множитель.
Этап 10.3.3
Перепишем это выражение.
Этап 10.4
Подставим верхнее предельное значение вместо в .
Этап 10.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 10.5.1
Сократим общий множитель.
Этап 10.5.2
Перепишем это выражение.
Этап 10.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 10.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 11
Объединим и .
Этап 12
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 13
Интеграл по имеет вид .
Этап 14
Подставим и упростим.
Нажмите для увеличения количества этапов...
Этап 14.1
Найдем значение в и в .
Этап 14.2
Найдем значение в и в .
Этап 14.3
Найдем значение в и в .
Этап 14.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 14.4.1
Добавим и .
Этап 14.4.2
Объединим числители над общим знаменателем.
Этап 14.4.3
Добавим и .
Этап 14.4.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 14.4.4.1
Сократим общий множитель.
Этап 14.4.4.2
Разделим на .
Этап 15
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 15.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 15.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 15.1.1.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 15.1.1.2
Точное значение : .
Этап 15.1.1.3
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 15.1.1.4
Точное значение : .
Этап 15.1.1.5
Умножим на .
Этап 15.1.2
Добавим и .
Этап 15.1.3
Умножим на .
Этап 15.2
Добавим и .
Этап 15.3
Объединим и .
Этап 16
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 17