Математический анализ Примеры

Оценить предел предел (1/(-9x-3)-1/87)/(1/(-9x-9)-1/81), если x стремится к -10
Этап 1
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.1.2
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 1.1.2.1.3
Найдем предел , который является константой по мере приближения к .
Этап 1.1.2.1.4
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.1.5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.1.2.1.6
Найдем предел , который является константой по мере приближения к .
Этап 1.1.2.1.7
Найдем предел , который является константой по мере приближения к .
Этап 1.1.2.2
Найдем предел , подставив значение для .
Этап 1.1.2.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.1
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.1.1
Умножим на .
Этап 1.1.2.3.1.2
Умножим на .
Этап 1.1.2.3.1.3
Вычтем из .
Этап 1.1.2.3.2
Объединим числители над общим знаменателем.
Этап 1.1.2.3.3
Вычтем из .
Этап 1.1.2.3.4
Разделим на .
Этап 1.1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.3.1.2
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 1.1.3.1.3
Найдем предел , который является константой по мере приближения к .
Этап 1.1.3.1.4
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.3.1.5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.1.3.1.6
Найдем предел , который является константой по мере приближения к .
Этап 1.1.3.1.7
Найдем предел , который является константой по мере приближения к .
Этап 1.1.3.2
Найдем предел , подставив значение для .
Этап 1.1.3.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.1.3.3.1
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 1.1.3.3.1.1
Умножим на .
Этап 1.1.3.3.1.2
Умножим на .
Этап 1.1.3.3.1.3
Вычтем из .
Этап 1.1.3.3.2
Объединим числители над общим знаменателем.
Этап 1.1.3.3.3
Вычтем из .
Этап 1.1.3.3.4
Разделим на .
Этап 1.1.3.3.5
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
По правилу суммы производная по имеет вид .
Этап 1.3.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.3.1
Перепишем в виде .
Этап 1.3.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.3.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3.2.3
Заменим все вхождения на .
Этап 1.3.3.3
По правилу суммы производная по имеет вид .
Этап 1.3.3.4
Поскольку является константой относительно , производная по равна .
Этап 1.3.3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3.6
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.3.7
Умножим на .
Этап 1.3.3.8
Добавим и .
Этап 1.3.3.9
Умножим на .
Этап 1.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.3.5.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 1.3.5.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.3.5.2.1
Объединим и .
Этап 1.3.5.2.2
Добавим и .
Этап 1.3.5.3
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 1.3.5.3.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.3.5.3.1.1
Вынесем множитель из .
Этап 1.3.5.3.1.2
Вынесем множитель из .
Этап 1.3.5.3.1.3
Вынесем множитель из .
Этап 1.3.5.3.2
Применим правило умножения к .
Этап 1.3.5.3.3
Возведем в степень .
Этап 1.3.5.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.3.5.4.1
Сократим общий множитель.
Этап 1.3.5.4.2
Перепишем это выражение.
Этап 1.3.6
По правилу суммы производная по имеет вид .
Этап 1.3.7
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.7.1
Перепишем в виде .
Этап 1.3.7.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.3.7.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.7.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.7.2.3
Заменим все вхождения на .
Этап 1.3.7.3
По правилу суммы производная по имеет вид .
Этап 1.3.7.4
Поскольку является константой относительно , производная по равна .
Этап 1.3.7.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.7.6
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.7.7
Умножим на .
Этап 1.3.7.8
Добавим и .
Этап 1.3.7.9
Умножим на .
Этап 1.3.8
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.9
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.3.9.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 1.3.9.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.3.9.2.1
Объединим и .
Этап 1.3.9.2.2
Добавим и .
Этап 1.3.9.3
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 1.3.9.3.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.3.9.3.1.1
Вынесем множитель из .
Этап 1.3.9.3.1.2
Вынесем множитель из .
Этап 1.3.9.3.1.3
Вынесем множитель из .
Этап 1.3.9.3.2
Применим правило умножения к .
Этап 1.3.9.3.3
Возведем в степень .
Этап 1.3.9.4
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.3.9.4.1
Вынесем множитель из .
Этап 1.3.9.4.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.3.9.4.2.1
Вынесем множитель из .
Этап 1.3.9.4.2.2
Сократим общий множитель.
Этап 1.3.9.4.2.3
Перепишем это выражение.
Этап 1.4
Умножим числитель на величину, обратную знаменателю.
Этап 1.5
Объединим множители.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Объединим и .
Этап 1.5.2
Объединим и .
Этап 2
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.2
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 2.3
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 2.4
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.5
Найдем предел , который является константой по мере приближения к .
Этап 2.6
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 2.7
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.8
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.9
Найдем предел , который является константой по мере приближения к .
Этап 3
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 3.1
Найдем предел , подставив значение для .
Этап 3.2
Найдем предел , подставив значение для .
Этап 4
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Умножим на .
Этап 4.1.2
Вычтем из .
Этап 4.1.3
Возведем в степень .
Этап 4.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Умножим на .
Этап 4.2.2
Умножим на .
Этап 4.2.3
Вычтем из .
Этап 4.2.4
Возведем в степень .
Этап 4.3
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Объединим и .
Этап 4.3.2
Умножим на .
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: