Математический анализ Примеры

Вычислим интеграл интеграл x(x^2+7)(1/3) по x
Этап 1
Объединим и .
Этап 2
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Дифференцируем .
Этап 2.1.2
Поскольку является константой относительно , производная по равна .
Этап 2.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.4
Умножим на .
Этап 2.2
Переформулируем задачу с помощью и .
Этап 3
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Вынесем множитель из .
Этап 3.2
Применим правило умножения к .
Этап 3.3
Возведем в степень .
Этап 4
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 4.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Дифференцируем .
Этап 4.1.2
По правилу суммы производная по имеет вид .
Этап 4.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.3.3
Умножим на .
Этап 4.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 4.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.4.2
Добавим и .
Этап 4.2
Переформулируем задачу с помощью и .
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Объединим и .
Этап 5.2
Объединим и .
Этап 5.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Вынесем множитель из .
Этап 5.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
Вынесем множитель из .
Этап 5.3.2.2
Сократим общий множитель.
Этап 5.3.2.3
Перепишем это выражение.
Этап 6
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
По правилу степени интеграл по имеет вид .
Этап 8
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.1
Перепишем в виде .
Этап 8.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Умножим на .
Этап 8.2.2
Умножим на .
Этап 9
Выполним обратную подстановку для каждой подставленной переменной интегрирования.
Нажмите для увеличения количества этапов...
Этап 9.1
Заменим все вхождения на .
Этап 9.2
Заменим все вхождения на .
Этап 10
Изменим порядок членов.