Математический анализ Примеры

Оценить предел предел (x+2x^2)/(x^2-1/4), если x стремится к -1/2
Этап 1
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.2
Объединим и .
Этап 1.3
Объединим числители над общим знаменателем.
Этап 2
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 2.1
Упростим выражение под знаком предела.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Умножим числитель на величину, обратную знаменателю.
Этап 2.1.2
Умножим на .
Этап 2.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 3.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Возьмем предел числителя и предел знаменателя.
Этап 3.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 3.1.2.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.1.2.3
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 3.1.2.4
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 3.1.2.4.1
Найдем предел , подставив значение для .
Этап 3.1.2.4.2
Найдем предел , подставив значение для .
Этап 3.1.2.5
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 3.1.2.5.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.1.2.5.1.1
Применим правило степени для распределения показателей.
Нажмите для увеличения количества этапов...
Этап 3.1.2.5.1.1.1
Применим правило умножения к .
Этап 3.1.2.5.1.1.2
Применим правило умножения к .
Этап 3.1.2.5.1.2
Возведем в степень .
Этап 3.1.2.5.1.3
Умножим на .
Этап 3.1.2.5.1.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.1.2.5.1.4.1
Вынесем множитель из .
Этап 3.1.2.5.1.4.2
Сократим общий множитель.
Этап 3.1.2.5.1.4.3
Перепишем это выражение.
Этап 3.1.2.5.1.5
Единица в любой степени равна единице.
Этап 3.1.2.5.2
Объединим числители над общим знаменателем.
Этап 3.1.2.5.3
Добавим и .
Этап 3.1.2.5.4
Разделим на .
Этап 3.1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 3.1.3.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 3.1.3.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 3.1.3.1.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.1.3.1.3
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 3.1.3.1.4
Найдем предел , который является константой по мере приближения к .
Этап 3.1.3.2
Найдем предел , подставив значение для .
Этап 3.1.3.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 3.1.3.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.1.3.3.1.1
Применим правило степени для распределения показателей.
Нажмите для увеличения количества этапов...
Этап 3.1.3.3.1.1.1
Применим правило умножения к .
Этап 3.1.3.3.1.1.2
Применим правило умножения к .
Этап 3.1.3.3.1.2
Возведем в степень .
Этап 3.1.3.3.1.3
Умножим на .
Этап 3.1.3.3.1.4
Единица в любой степени равна единице.
Этап 3.1.3.3.1.5
Возведем в степень .
Этап 3.1.3.3.1.6
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.1.3.3.1.6.1
Сократим общий множитель.
Этап 3.1.3.3.1.6.2
Перепишем это выражение.
Этап 3.1.3.3.1.7
Умножим на .
Этап 3.1.3.3.2
Вычтем из .
Этап 3.1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 3.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 3.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 3.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Продифференцируем числитель и знаменатель.
Этап 3.3.2
По правилу суммы производная по имеет вид .
Этап 3.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.3.4.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.4.3
Умножим на .
Этап 3.3.5
Изменим порядок членов.
Этап 3.3.6
По правилу суммы производная по имеет вид .
Этап 3.3.7
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.3.7.1
Перенесем влево от .
Этап 3.3.7.2
Поскольку является константой относительно , производная по равна .
Этап 3.3.7.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.7.4
Умножим на .
Этап 3.3.8
Поскольку является константой относительно , производная относительно равна .
Этап 3.3.9
Добавим и .
Этап 4
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 4.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.2
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 4.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 4.4
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.5
Найдем предел , который является константой по мере приближения к .
Этап 5
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 5.1
Найдем предел , подставив значение для .
Этап 5.2
Найдем предел , подставив значение для .
Этап 6
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 6.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.1.1
Вынесем множитель из .
Этап 6.1.2
Сократим общий множитель.
Этап 6.1.3
Перепишем это выражение.
Этап 6.2
Умножим числитель на величину, обратную знаменателю.
Этап 6.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.3.1
Вынесем множитель из .
Этап 6.3.2
Сократим общий множитель.
Этап 6.3.3
Перепишем это выражение.
Этап 6.4
Умножим на .
Этап 6.5
Объединим и .
Этап 6.6
Разделим на .
Этап 6.7
Добавим и .
Этап 6.8
Умножим на .