Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем предел числителя и предел знаменателя.
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Этап 1.1.2.1
Вычислим предел.
Этап 1.1.2.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.1.2
Найдем предел , который является константой по мере приближения к .
Этап 1.1.2.1.3
Внесем предел под знак экспоненты.
Этап 1.1.2.2
Найдем предел , подставив значение для .
Этап 1.1.2.3
Упростим ответ.
Этап 1.1.2.3.1
Упростим каждый член.
Этап 1.1.2.3.1.1
Любое число в степени равно .
Этап 1.1.2.3.1.2
Умножим на .
Этап 1.1.2.3.2
Вычтем из .
Этап 1.1.3
Найдем предел знаменателя.
Этап 1.1.3.1
Вычислим предел.
Этап 1.1.3.1.1
Внесем предел под знак логарифма.
Этап 1.1.3.1.2
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.3.1.3
Найдем предел , который является константой по мере приближения к .
Этап 1.1.3.1.4
Внесем предел под знак экспоненты.
Этап 1.1.3.2
Найдем предел , подставив значение для .
Этап 1.1.3.3
Упростим ответ.
Этап 1.1.3.3.1
Упростим каждый член.
Этап 1.1.3.3.1.1
Любое число в степени равно .
Этап 1.1.3.3.1.2
Умножим на .
Этап 1.1.3.3.2
Вычтем из .
Этап 1.1.3.3.3
Натуральный логарифм равен .
Этап 1.1.3.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
По правилу суммы производная по имеет вид .
Этап 1.3.3
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.4
Найдем значение .
Этап 1.3.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.4.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.3.5
Вычтем из .
Этап 1.3.6
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.3.6.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.6.2
Производная по равна .
Этап 1.3.6.3
Заменим все вхождения на .
Этап 1.3.7
По правилу суммы производная по имеет вид .
Этап 1.3.8
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.9
Добавим и .
Этап 1.3.10
Поскольку является константой относительно , производная по равна .
Этап 1.3.11
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.3.12
Объединим и .
Этап 1.4
Умножим числитель на величину, обратную знаменателю.
Этап 1.5
Объединим множители.
Этап 1.5.1
Умножим на .
Этап 1.5.2
Умножим на .
Этап 1.5.3
Объединим и .
Этап 1.6
Сократим общий множитель .
Этап 1.6.1
Сократим общий множитель.
Этап 1.6.2
Разделим на .
Этап 2
Этап 2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.2
Найдем предел , который является константой по мере приближения к .
Этап 2.3
Внесем предел под знак экспоненты.
Этап 3
Найдем предел , подставив значение для .
Этап 4
Этап 4.1
Упростим каждый член.
Этап 4.1.1
Любое число в степени равно .
Этап 4.1.2
Умножим на .
Этап 4.2
Вычтем из .