Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем предел числителя и предел знаменателя.
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Этап 1.1.2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.1.2.3
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.1.2.4
Найдем предел , который является константой по мере приближения к .
Этап 1.1.2.5
Найдем значения пределов, подставив значение для всех вхождений .
Этап 1.1.2.5.1
Найдем предел , подставив значение для .
Этап 1.1.2.5.2
Найдем предел , подставив значение для .
Этап 1.1.2.6
Упростим ответ.
Этап 1.1.2.6.1
Упростим каждый член.
Этап 1.1.2.6.1.1
Применим правило степени для распределения показателей.
Этап 1.1.2.6.1.1.1
Применим правило умножения к .
Этап 1.1.2.6.1.1.2
Применим правило умножения к .
Этап 1.1.2.6.1.2
Возведем в степень .
Этап 1.1.2.6.1.3
Умножим на .
Этап 1.1.2.6.1.4
Сократим общий множитель .
Этап 1.1.2.6.1.4.1
Вынесем множитель из .
Этап 1.1.2.6.1.4.2
Сократим общий множитель.
Этап 1.1.2.6.1.4.3
Перепишем это выражение.
Этап 1.1.2.6.1.5
Единица в любой степени равна единице.
Этап 1.1.2.6.1.6
Умножим .
Этап 1.1.2.6.1.6.1
Умножим на .
Этап 1.1.2.6.1.6.2
Умножим на .
Этап 1.1.2.6.1.7
Умножим на .
Этап 1.1.2.6.2
Объединим числители над общим знаменателем.
Этап 1.1.2.6.3
Добавим и .
Этап 1.1.2.6.4
Разделим на .
Этап 1.1.2.6.5
Добавим и .
Этап 1.1.3
Найдем предел знаменателя.
Этап 1.1.3.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.3.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.1.3.3
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.1.3.4
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.1.3.5
Найдем предел , который является константой по мере приближения к .
Этап 1.1.3.6
Найдем значения пределов, подставив значение для всех вхождений .
Этап 1.1.3.6.1
Найдем предел , подставив значение для .
Этап 1.1.3.6.2
Найдем предел , подставив значение для .
Этап 1.1.3.7
Упростим ответ.
Этап 1.1.3.7.1
Упростим каждый член.
Этап 1.1.3.7.1.1
Применим правило степени для распределения показателей.
Этап 1.1.3.7.1.1.1
Применим правило умножения к .
Этап 1.1.3.7.1.1.2
Применим правило умножения к .
Этап 1.1.3.7.1.2
Возведем в степень .
Этап 1.1.3.7.1.3
Умножим на .
Этап 1.1.3.7.1.4
Сократим общий множитель .
Этап 1.1.3.7.1.4.1
Вынесем множитель из .
Этап 1.1.3.7.1.4.2
Сократим общий множитель.
Этап 1.1.3.7.1.4.3
Перепишем это выражение.
Этап 1.1.3.7.1.5
Единица в любой степени равна единице.
Этап 1.1.3.7.1.6
Умножим .
Этап 1.1.3.7.1.6.1
Умножим на .
Этап 1.1.3.7.1.6.2
Объединим и .
Этап 1.1.3.7.1.7
Вынесем знак минуса перед дробью.
Этап 1.1.3.7.2
Объединим числители над общим знаменателем.
Этап 1.1.3.7.3
Вычтем из .
Этап 1.1.3.7.4
Разделим на .
Этап 1.1.3.7.5
Вычтем из .
Этап 1.1.3.7.6
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.3.8
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
По правилу суммы производная по имеет вид .
Этап 1.3.3
Найдем значение .
Этап 1.3.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3.3
Умножим на .
Этап 1.3.4
Найдем значение .
Этап 1.3.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.4.3
Умножим на .
Этап 1.3.5
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.6
Добавим и .
Этап 1.3.7
По правилу суммы производная по имеет вид .
Этап 1.3.8
Найдем значение .
Этап 1.3.8.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.8.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.8.3
Умножим на .
Этап 1.3.9
Найдем значение .
Этап 1.3.9.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.9.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.9.3
Умножим на .
Этап 1.3.10
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.11
Добавим и .
Этап 2
Этап 2.1
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 2.2
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.4
Найдем предел , который является константой по мере приближения к .
Этап 2.5
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.6
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.7
Найдем предел , который является константой по мере приближения к .
Этап 3
Этап 3.1
Найдем предел , подставив значение для .
Этап 3.2
Найдем предел , подставив значение для .
Этап 4
Этап 4.1
Упростим числитель.
Этап 4.1.1
Сократим общий множитель .
Этап 4.1.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 4.1.1.2
Вынесем множитель из .
Этап 4.1.1.3
Сократим общий множитель.
Этап 4.1.1.4
Перепишем это выражение.
Этап 4.1.2
Умножим на .
Этап 4.1.3
Умножим на .
Этап 4.1.4
Вычтем из .
Этап 4.2
Упростим знаменатель.
Этап 4.2.1
Сократим общий множитель .
Этап 4.2.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 4.2.1.2
Вынесем множитель из .
Этап 4.2.1.3
Сократим общий множитель.
Этап 4.2.1.4
Перепишем это выражение.
Этап 4.2.2
Умножим на .
Этап 4.2.3
Добавим и .
Этап 4.3
Разделим на .