Математический анализ Примеры

Найти максимальное/минимальное значение f(x)=4/3x^3+7x^2-8x-42
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Объединим и .
Этап 1.2.4
Умножим на .
Этап 1.2.5
Объединим и .
Этап 1.2.6
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.2.6.1
Вынесем множитель из .
Этап 1.2.6.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.2.6.2.1
Вынесем множитель из .
Этап 1.2.6.2.2
Сократим общий множитель.
Этап 1.2.6.2.3
Перепишем это выражение.
Этап 1.2.6.2.4
Разделим на .
Этап 1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3
Умножим на .
Этап 1.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.4.3
Умножим на .
Этап 1.5
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.5.2
Добавим и .
Этап 2
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 2.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.4.2
Добавим и .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1.1
По правилу суммы производная по имеет вид .
Этап 4.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2.3
Объединим и .
Этап 4.1.2.4
Умножим на .
Этап 4.1.2.5
Объединим и .
Этап 4.1.2.6
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 4.1.2.6.1
Вынесем множитель из .
Этап 4.1.2.6.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 4.1.2.6.2.1
Вынесем множитель из .
Этап 4.1.2.6.2.2
Сократим общий множитель.
Этап 4.1.2.6.2.3
Перепишем это выражение.
Этап 4.1.2.6.2.4
Разделим на .
Этап 4.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.3.3
Умножим на .
Этап 4.1.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.1.4.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.4.3
Умножим на .
Этап 4.1.5
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 4.1.5.1
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.5.2
Добавим и .
Этап 4.2
Первая производная по равна .
Этап 5
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Вынесем множитель из .
Этап 5.2.1.2
Вынесем множитель из .
Этап 5.2.1.3
Вынесем множитель из .
Этап 5.2.1.4
Вынесем множитель из .
Этап 5.2.1.5
Вынесем множитель из .
Этап 5.2.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 5.2.2.1.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 5.2.2.1.1.1
Вынесем множитель из .
Этап 5.2.2.1.1.2
Запишем как плюс
Этап 5.2.2.1.1.3
Применим свойство дистрибутивности.
Этап 5.2.2.1.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1.2.1
Сгруппируем первые два члена и последние два члена.
Этап 5.2.2.1.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 5.2.2.1.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 5.2.2.2
Избавимся от ненужных скобок.
Этап 5.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.4.1
Приравняем к .
Этап 5.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.4.2.1
Добавим к обеим частям уравнения.
Этап 5.4.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.4.2.2.1
Разделим каждый член на .
Этап 5.4.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.4.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.4.2.2.2.1.1
Сократим общий множитель.
Этап 5.4.2.2.2.1.2
Разделим на .
Этап 5.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.5.1
Приравняем к .
Этап 5.5.2
Вычтем из обеих частей уравнения.
Этап 5.6
Окончательным решением являются все значения, при которых верно.
Этап 6
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 6.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 9.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 9.1.1
Вынесем множитель из .
Этап 9.1.2
Сократим общий множитель.
Этап 9.1.3
Перепишем это выражение.
Этап 9.2
Добавим и .
Этап 10
 — локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
 — локальный минимум
Этап 11
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 11.1
Заменим в этом выражении переменную на .
Этап 11.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 11.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 11.2.1.1
Применим правило умножения к .
Этап 11.2.1.2
Объединим.
Этап 11.2.1.3
Единица в любой степени равна единице.
Этап 11.2.1.4
Возведем в степень .
Этап 11.2.1.5
Умножим на .
Этап 11.2.1.6
Умножим на .
Этап 11.2.1.7
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 11.2.1.7.1
Вынесем множитель из .
Этап 11.2.1.7.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 11.2.1.7.2.1
Вынесем множитель из .
Этап 11.2.1.7.2.2
Сократим общий множитель.
Этап 11.2.1.7.2.3
Перепишем это выражение.
Этап 11.2.1.8
Применим правило умножения к .
Этап 11.2.1.9
Единица в любой степени равна единице.
Этап 11.2.1.10
Возведем в степень .
Этап 11.2.1.11
Объединим и .
Этап 11.2.1.12
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 11.2.1.12.1
Вынесем множитель из .
Этап 11.2.1.12.2
Сократим общий множитель.
Этап 11.2.1.12.3
Перепишем это выражение.
Этап 11.2.2
Найдем общий знаменатель.
Нажмите для увеличения количества этапов...
Этап 11.2.2.1
Умножим на .
Этап 11.2.2.2
Умножим на .
Этап 11.2.2.3
Умножим на .
Этап 11.2.2.4
Умножим на .
Этап 11.2.2.5
Запишем в виде дроби со знаменателем .
Этап 11.2.2.6
Умножим на .
Этап 11.2.2.7
Умножим на .
Этап 11.2.2.8
Запишем в виде дроби со знаменателем .
Этап 11.2.2.9
Умножим на .
Этап 11.2.2.10
Умножим на .
Этап 11.2.2.11
Изменим порядок множителей в .
Этап 11.2.2.12
Умножим на .
Этап 11.2.2.13
Изменим порядок множителей в .
Этап 11.2.2.14
Умножим на .
Этап 11.2.3
Объединим числители над общим знаменателем.
Этап 11.2.4
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 11.2.4.1
Умножим на .
Этап 11.2.4.2
Умножим на .
Этап 11.2.4.3
Умножим на .
Этап 11.2.5
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 11.2.5.1
Добавим и .
Этап 11.2.5.2
Вычтем из .
Этап 11.2.5.3
Вычтем из .
Этап 11.2.5.4
Вынесем знак минуса перед дробью.
Этап 11.2.6
Окончательный ответ: .
Этап 12
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 13
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 13.1
Умножим на .
Этап 13.2
Добавим и .
Этап 14
 — локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
 — локальный максимум
Этап 15
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 15.1
Заменим в этом выражении переменную на .
Этап 15.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 15.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 15.2.1.1
Возведем в степень .
Этап 15.2.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 15.2.1.2.1
Объединим и .
Этап 15.2.1.2.2
Умножим на .
Этап 15.2.1.3
Вынесем знак минуса перед дробью.
Этап 15.2.1.4
Возведем в степень .
Этап 15.2.1.5
Умножим на .
Этап 15.2.1.6
Умножим на .
Этап 15.2.2
Найдем общий знаменатель.
Нажмите для увеличения количества этапов...
Этап 15.2.2.1
Запишем в виде дроби со знаменателем .
Этап 15.2.2.2
Умножим на .
Этап 15.2.2.3
Умножим на .
Этап 15.2.2.4
Запишем в виде дроби со знаменателем .
Этап 15.2.2.5
Умножим на .
Этап 15.2.2.6
Умножим на .
Этап 15.2.2.7
Запишем в виде дроби со знаменателем .
Этап 15.2.2.8
Умножим на .
Этап 15.2.2.9
Умножим на .
Этап 15.2.3
Объединим числители над общим знаменателем.
Этап 15.2.4
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 15.2.4.1
Умножим на .
Этап 15.2.4.2
Умножим на .
Этап 15.2.4.3
Умножим на .
Этап 15.2.5
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 15.2.5.1
Добавим и .
Этап 15.2.5.2
Добавим и .
Этап 15.2.5.3
Вычтем из .
Этап 15.2.6
Окончательный ответ: .
Этап 16
Это локальные экстремумы .
 — локальный минимум
 — локальный максимум
Этап 17