Математический анализ Примеры

Этап 1
Продифференцируем обе части уравнения.
Этап 2
Производная по равна .
Этап 3
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Чтобы применить цепное правило, зададим как .
Этап 3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.3
Заменим все вхождения на .
Этап 3.3
Перенесем влево от .
Этап 3.4
Производная по равна .
Этап 3.5
Умножим на .
Этап 3.6
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.6.1
Чтобы применить цепное правило, зададим как .
Этап 3.6.2
Производная по равна .
Этап 3.6.3
Заменим все вхождения на .
Этап 3.7
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.7.1
Поскольку является константой относительно , производная по равна .
Этап 3.7.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.7.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 3.7.3.1
Умножим на .
Этап 3.7.3.2
Перенесем влево от .
Этап 3.7.3.3
Изменим порядок членов.
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Заменим на .