Введите задачу...
Математический анализ Примеры
Этап 1
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 2
Составим интеграл, чтобы решить его.
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Этап 4.1
Пусть . Найдем .
Этап 4.1.1
Дифференцируем .
Этап 4.1.2
По правилу суммы производная по имеет вид .
Этап 4.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.5
Добавим и .
Этап 4.2
Переформулируем задачу с помощью и .
Этап 5
Этап 5.1
С помощью запишем в виде .
Этап 5.2
Вынесем из знаменателя, возведя в степень.
Этап 5.3
Перемножим экспоненты в .
Этап 5.3.1
Применим правило степени и перемножим показатели, .
Этап 5.3.2
Объединим и .
Этап 5.3.3
Вынесем знак минуса перед дробью.
Этап 6
По правилу степени интеграл по имеет вид .
Этап 7
Этап 7.1
Перепишем в виде .
Этап 7.2
Умножим на .
Этап 8
Заменим все вхождения на .
Этап 9
Ответ ― первообразная функции .