Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Найдем предел числителя.
Этап 1.2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.2.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.2.3
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 1.2.4
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.2.5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.2.6
Найдем предел , который является константой по мере приближения к .
Этап 1.2.7
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.2.8
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.2.9
Найдем значения пределов, подставив значение для всех вхождений .
Этап 1.2.9.1
Найдем предел , подставив значение для .
Этап 1.2.9.2
Найдем предел , подставив значение для .
Этап 1.2.10
Упростим ответ.
Этап 1.2.10.1
Упростим каждый член.
Этап 1.2.10.1.1
Упростим каждый член.
Этап 1.2.10.1.1.1
Умножим на .
Этап 1.2.10.1.1.2
Умножим на .
Этап 1.2.10.1.2
Вычтем из .
Этап 1.2.10.1.3
Точное значение : .
Этап 1.2.10.1.4
Умножим на .
Этап 1.2.10.1.5
Единица в любой степени равна единице.
Этап 1.2.10.1.6
Умножим на .
Этап 1.2.10.2
Вычтем из .
Этап 1.3
Найдем предел знаменателя.
Этап 1.3.1
Вычислим предел.
Этап 1.3.1.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.3.1.2
Внесем предел под знак логарифма.
Этап 1.3.1.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.3.1.4
Найдем предел , который является константой по мере приближения к .
Этап 1.3.1.5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.3.2
Найдем предел , подставив значение для .
Этап 1.3.3
Упростим ответ.
Этап 1.3.3.1
Умножим на .
Этап 1.3.3.2
Вычтем из .
Этап 1.3.3.3
Натуральный логарифм равен .
Этап 1.3.3.4
Умножим на .
Этап 1.3.3.5
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
По правилу суммы производная по имеет вид .
Этап 3.3
Найдем значение .
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.2.2
Производная по равна .
Этап 3.3.2.3
Заменим все вхождения на .
Этап 3.3.3
По правилу суммы производная по имеет вид .
Этап 3.3.4
Поскольку является константой относительно , производная по равна .
Этап 3.3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.6
Поскольку является константой относительно , производная относительно равна .
Этап 3.3.7
Умножим на .
Этап 3.3.8
Добавим и .
Этап 3.3.9
Умножим на .
Этап 3.3.10
Умножим на .
Этап 3.4
Найдем значение .
Этап 3.4.1
Поскольку является константой относительно , производная по равна .
Этап 3.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4.3
Умножим на .
Этап 3.5
Изменим порядок членов.
Этап 3.6
Поскольку является константой относительно , производная по равна .
Этап 3.7
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.7.1
Чтобы применить цепное правило, зададим как .
Этап 3.7.2
Производная по равна .
Этап 3.7.3
Заменим все вхождения на .
Этап 3.8
Объединим и .
Этап 3.9
По правилу суммы производная по имеет вид .
Этап 3.10
Поскольку является константой относительно , производная относительно равна .
Этап 3.11
Добавим и .
Этап 3.12
Поскольку является константой относительно , производная по равна .
Этап 3.13
Объединим и .
Этап 3.14
Умножим на .
Этап 3.15
Вынесем знак минуса перед дробью.
Этап 3.16
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.17
Умножим на .
Этап 4
Умножим числитель на величину, обратную знаменателю.
Этап 5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 6
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 7
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 8
Вынесем член из-под знака предела, так как он не зависит от .
Этап 9
Вынесем член из-под знака предела, так как он не зависит от .
Этап 10
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 11
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 12
Вынесем член из-под знака предела, так как он не зависит от .
Этап 13
Найдем предел , который является константой по мере приближения к .
Этап 14
Вынесем член из-под знака предела, так как он не зависит от .
Этап 15
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 16
Найдем предел , который является константой по мере приближения к .
Этап 17
Вынесем член из-под знака предела, так как он не зависит от .
Этап 18
Этап 18.1
Найдем предел , подставив значение для .
Этап 18.2
Найдем предел , подставив значение для .
Этап 18.3
Найдем предел , подставив значение для .
Этап 19
Этап 19.1
Упростим каждый член.
Этап 19.1.1
Умножим на .
Этап 19.1.2
Упростим каждый член.
Этап 19.1.2.1
Умножим на .
Этап 19.1.2.2
Умножим на .
Этап 19.1.3
Вычтем из .
Этап 19.1.4
Точное значение : .
Этап 19.1.5
Умножим на .
Этап 19.2
Добавим и .
Этап 19.3
Сократим общий множитель .
Этап 19.3.1
Вынесем множитель из .
Этап 19.3.2
Сократим общий множитель.
Этап 19.3.3
Перепишем это выражение.
Этап 19.4
Умножим на .
Этап 19.5
Умножим на .
Этап 19.6
Умножим на .
Этап 19.7
Вычтем из .