Математический анализ Примеры

Вычислить при помощи правила Лопиталя предел (3sin(2x+6))/(3+x), если x стремится к -3
Этап 1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.2.1.2
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 1.2.1.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.2.1.4
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.2.1.5
Найдем предел , который является константой по мере приближения к .
Этап 1.2.2
Найдем предел , подставив значение для .
Этап 1.2.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Умножим на .
Этап 1.2.3.2
Добавим и .
Этап 1.2.3.3
Точное значение : .
Этап 1.2.3.4
Умножим на .
Этап 1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.3.1.2
Найдем предел , который является константой по мере приближения к .
Этап 1.3.2
Найдем предел , подставив значение для .
Этап 1.3.3
Вычтем из .
Этап 1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
Поскольку является константой относительно , производная по равна .
Этап 3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.2
Производная по равна .
Этап 3.3.3
Заменим все вхождения на .
Этап 3.4
Избавимся от скобок.
Этап 3.5
По правилу суммы производная по имеет вид .
Этап 3.6
Поскольку является константой относительно , производная по равна .
Этап 3.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.8
Умножим на .
Этап 3.9
Поскольку является константой относительно , производная относительно равна .
Этап 3.10
Добавим и .
Этап 3.11
Умножим на .
Этап 3.12
По правилу суммы производная по имеет вид .
Этап 3.13
Поскольку является константой относительно , производная относительно равна .
Этап 3.14
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.15
Добавим и .
Этап 4
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 4.1
Разделим на .
Этап 4.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.3
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 4.4
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 4.5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.6
Найдем предел , который является константой по мере приближения к .
Этап 5
Найдем предел , подставив значение для .
Этап 6
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 6.1
Умножим на .
Этап 6.2
Добавим и .
Этап 6.3
Точное значение : .
Этап 6.4
Умножим на .