Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем предел числителя и предел знаменателя.
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Этап 1.1.2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.1.2.3
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 1.1.2.4
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 1.1.2.5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.1.2.6
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.1.2.7
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 1.1.2.8
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.1.2.9
Найдем значения пределов, подставив значение для всех вхождений .
Этап 1.1.2.9.1
Найдем предел , подставив значение для .
Этап 1.1.2.9.2
Найдем предел , подставив значение для .
Этап 1.1.2.9.3
Найдем предел , подставив значение для .
Этап 1.1.2.10
Упростим ответ.
Этап 1.1.2.10.1
Упростим каждый член.
Этап 1.1.2.10.1.1
Умножим на .
Этап 1.1.2.10.1.2
Умножим на .
Этап 1.1.2.10.1.3
Точное значение : .
Этап 1.1.2.10.1.4
Умножим на .
Этап 1.1.2.10.1.5
Умножим на .
Этап 1.1.2.10.1.6
Точное значение : .
Этап 1.1.2.10.1.7
Умножим на .
Этап 1.1.2.10.2
Добавим и .
Этап 1.1.3
Найдем предел знаменателя.
Этап 1.1.3.1
Вычислим предел.
Этап 1.1.3.1.1
Перенесем предел внутрь тригонометрической функции, поскольку тангенс — непрерывная функция.
Этап 1.1.3.1.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.1.3.2
Найдем предел , подставив значение для .
Этап 1.1.3.3
Упростим ответ.
Этап 1.1.3.3.1
Умножим на .
Этап 1.1.3.3.2
Точное значение : .
Этап 1.1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
По правилу суммы производная по имеет вид .
Этап 1.3.3
Найдем значение .
Этап 1.3.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.3.3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.3.3.3.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.3.3.2
Производная по равна .
Этап 1.3.3.3.3
Заменим все вхождения на .
Этап 1.3.3.4
Поскольку является константой относительно , производная по равна .
Этап 1.3.3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3.7
Умножим на .
Этап 1.3.3.8
Умножим на .
Этап 1.3.3.9
Умножим на .
Этап 1.3.4
Найдем значение .
Этап 1.3.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.4.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.3.4.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.4.2.2
Производная по равна .
Этап 1.3.4.2.3
Заменим все вхождения на .
Этап 1.3.4.3
Поскольку является константой относительно , производная по равна .
Этап 1.3.4.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.4.5
Умножим на .
Этап 1.3.4.6
Перенесем влево от .
Этап 1.3.4.7
Умножим на .
Этап 1.3.5
Упростим.
Этап 1.3.5.1
Применим свойство дистрибутивности.
Этап 1.3.5.2
Умножим на .
Этап 1.3.6
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.3.6.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.6.2
Производная по равна .
Этап 1.3.6.3
Заменим все вхождения на .
Этап 1.3.7
Поскольку является константой относительно , производная по равна .
Этап 1.3.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.9
Умножим на .
Этап 1.3.10
Перенесем влево от .
Этап 1.4
Сократим общий множитель и .
Этап 1.4.1
Вынесем множитель из .
Этап 1.4.2
Вынесем множитель из .
Этап 1.4.3
Вынесем множитель из .
Этап 1.4.4
Вынесем множитель из .
Этап 1.4.5
Вынесем множитель из .
Этап 1.4.6
Сократим общие множители.
Этап 1.4.6.1
Вынесем множитель из .
Этап 1.4.6.2
Сократим общий множитель.
Этап 1.4.6.3
Перепишем это выражение.
Этап 2
Этап 2.1
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 2.2
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.4
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 2.5
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 2.6
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.7
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 2.8
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.9
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.10
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 2.11
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.12
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 2.13
Перенесем предел внутрь тригонометрической функции, поскольку секанс — непрерывная функция.
Этап 2.14
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3
Этап 3.1
Найдем предел , подставив значение для .
Этап 3.2
Найдем предел , подставив значение для .
Этап 3.3
Найдем предел , подставив значение для .
Этап 3.4
Найдем предел , подставив значение для .
Этап 3.5
Найдем предел , подставив значение для .
Этап 4
Этап 4.1
Упростим числитель.
Этап 4.1.1
Умножим на .
Этап 4.1.2
Умножим на .
Этап 4.1.3
Точное значение : .
Этап 4.1.4
Умножим на .
Этап 4.1.5
Умножим на .
Этап 4.1.6
Точное значение : .
Этап 4.1.7
Умножим на .
Этап 4.1.8
Точное значение : .
Этап 4.1.9
Умножим на .
Этап 4.1.10
Добавим и .
Этап 4.1.11
Добавим и .
Этап 4.2
Упростим знаменатель.
Этап 4.2.1
Умножим на .
Этап 4.2.2
Точное значение : .
Этап 4.2.3
Единица в любой степени равна единице.
Этап 4.3
Разделим на .