Математический анализ Примеры

Trovare la Derivata - d/dx y=cos(x^2)*sin(x^2)
Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Производная по равна .
Этап 2.3
Заменим все вхождения на .
Этап 3
Возведем в степень .
Этап 4
Возведем в степень .
Этап 5
Применим правило степени для объединения показателей.
Этап 6
Продифференцируем, используя правило степени.
Нажмите для увеличения количества этапов...
Этап 6.1
Добавим и .
Этап 6.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 7
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 7.1
Чтобы применить цепное правило, зададим как .
Этап 7.2
Производная по равна .
Этап 7.3
Заменим все вхождения на .
Этап 8
Возведем в степень .
Этап 9
Возведем в степень .
Этап 10
Применим правило степени для объединения показателей.
Этап 11
Добавим и .
Этап 12
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 13
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 13.1
Умножим на .
Этап 13.2
Изменим порядок членов.