Математический анализ Примеры

Вычислим интеграл интеграл 3x(2x-1)^2 по x
Этап 1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Дифференцируем .
Этап 2.1.2
По правилу суммы производная по имеет вид .
Этап 2.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.3.3
Умножим на .
Этап 2.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 2.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.1.4.2
Добавим и .
Этап 2.2
Переформулируем задачу с помощью и .
Этап 3
Объединим и .
Этап 4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Применим свойство дистрибутивности.
Этап 4.2
Умножим на .
Этап 4.3
Возведем в степень .
Этап 4.4
Применим правило степени для объединения показателей.
Этап 4.5
Добавим и .
Этап 4.6
Умножим на .
Этап 4.7
Умножим на .
Этап 4.8
Умножим на .
Этап 5
Разделим данный интеграл на несколько интегралов.
Этап 6
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
По правилу степени интеграл по имеет вид .
Этап 8
Объединим и .
Этап 9
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 10
По правилу степени интеграл по имеет вид .
Этап 11
Упростим.
Нажмите для увеличения количества этапов...
Этап 11.1
Объединим и .
Этап 11.2
Упростим.
Этап 12
Заменим все вхождения на .
Этап 13
Изменим порядок членов.