Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Поскольку является константой относительно , производная относительно равна .
Этап 2.3
Добавим и .
Этап 2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.5
Умножим на .
Этап 2.6
По правилу суммы производная по имеет вид .
Этап 2.7
Поскольку является константой относительно , производная относительно равна .
Этап 2.8
Добавим и .
Этап 2.9
Поскольку является константой относительно , производная по равна .
Этап 2.10
Умножим на .
Этап 2.11
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.12
Умножим на .
Этап 3
Этап 3.1
Применим свойство дистрибутивности.
Этап 3.2
Применим свойство дистрибутивности.
Этап 3.3
Упростим числитель.
Этап 3.3.1
Упростим каждый член.
Этап 3.3.1.1
Умножим на .
Этап 3.3.1.2
Умножим на , сложив экспоненты.
Этап 3.3.1.2.1
Перенесем .
Этап 3.3.1.2.2
Умножим на .
Этап 3.3.2
Добавим и .
Этап 3.4
Изменим порядок членов.