Математический анализ Примеры

Этап 1
Find the values where the second derivative is equal to .
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1.1.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.1.3
Заменим все вхождения на .
Этап 1.1.1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.1.2.3
Добавим и .
Этап 1.1.1.2.4
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.2.5
Умножим на .
Этап 1.1.1.2.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2.7
Умножим на .
Этап 1.1.2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Перепишем в виде .
Этап 1.1.2.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.1.2.2.1
Применим свойство дистрибутивности.
Этап 1.1.2.2.2
Применим свойство дистрибутивности.
Этап 1.1.2.2.3
Применим свойство дистрибутивности.
Этап 1.1.2.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.1.1
Умножим на .
Этап 1.1.2.3.1.2
Умножим на .
Этап 1.1.2.3.1.3
Умножим на .
Этап 1.1.2.3.1.4
Перепишем, используя свойство коммутативности умножения.
Этап 1.1.2.3.1.5
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.1.5.1
Перенесем .
Этап 1.1.2.3.1.5.2
Умножим на .
Этап 1.1.2.3.1.6
Умножим на .
Этап 1.1.2.3.2
Вычтем из .
Этап 1.1.2.4
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.5
По правилу суммы производная по имеет вид .
Этап 1.1.2.6
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.2.7
Добавим и .
Этап 1.1.2.8
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.10
Умножим на .
Этап 1.1.2.11
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.12
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.13
Умножим на .
Этап 1.1.2.14
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.2.14.1
Применим свойство дистрибутивности.
Этап 1.1.2.14.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.1.2.14.2.1
Умножим на .
Этап 1.1.2.14.2.2
Умножим на .
Этап 1.1.2.14.3
Изменим порядок членов.
Этап 1.1.3
Вторая производная по равна .
Этап 1.2
Приравняем вторую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Пусть вторая производная равна .
Этап 1.2.2
Вычтем из обеих частей уравнения.
Этап 1.2.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Разделим каждый член на .
Этап 1.2.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.3.2.1.1
Сократим общий множитель.
Этап 1.2.3.2.1.2
Разделим на .
Этап 1.2.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.3.3.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.2.3.3.1.1
Вынесем множитель из .
Этап 1.2.3.3.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.2.3.3.1.2.1
Вынесем множитель из .
Этап 1.2.3.3.1.2.2
Сократим общий множитель.
Этап 1.2.3.3.1.2.3
Перепишем это выражение.
Этап 2
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 3
Создадим интервалы вокруг значений , в которых вторая производная равна нулю или не определена.
Этап 4
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Этап 4.1
Заменим в этом выражении переменную на .
Этап 4.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Умножим на .
Этап 4.2.2
Добавим и .
Этап 4.2.3
Окончательный ответ: .
Этап 4.3
График вогнут вверх на интервале , поскольку имеет положительное значение.
График имеет вогнутость вверх.
График имеет вогнутость вверх.
Этап 5
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Умножим на .
Этап 5.2.2
Добавим и .
Этап 5.2.3
Окончательный ответ: .
Этап 5.3
График вогнут вниз на интервале , поскольку имеет отрицательное значение.
График имеет вогнутость вниз.
График имеет вогнутость вниз.
Этап 6
График вогнут вниз, когда вторая производная отрицательна, и вогнут вверх, когда вторая производная положительна.
График имеет вогнутость вверх.
График имеет вогнутость вниз.
Этап 7